[bookmark: _GoBack]Core-Level Performance Engineering with the Open-Source Architecture Code Analyzer (OSACA) - by University of Erlangen-Nuremberg, Germany (by Jan Laukeman and Georg Hager)
Abstract
While many developers put a lot of effort into optimizing large-scale parallelism, they often neglect the importance of an efficient serial code. Even worse, slow serial code tends to scale very well, hiding the fact that resources are wasted because no definite hardware performance limit (“bottleneck”) is exhausted. This tutorial conveys the required knowledge to develop a thorough understanding of the interactions between software and hardware on the level of a single CPU core and the lowest memory hierarchy level (the L1 cache). We introduce general out-of-order core architectures and their typical performance bottlenecks using modern x86-64 (Intel Sapphire Rapids) and ARM (Fujitsu A64FX) processors as examples. We then go into detail about x86 and AArch64 assembly code, specifically including vectorization (SIMD), pipeline utilization, critical paths, and loop-carried dependencies. We also demonstrate performance analysis and performance engineering using the Open-Source Architecture Code Analyzer (OSACA) in combination with a dedicated instance of the well-known Compiler Explorer. Various hands-on exercises will allow attendees to make their own experiments and measurements and identify in-core performance bottlenecks. Furthermore, we show real-life use cases from computational science (sparse solvers, lattice QCD) to emphasize how profitable in-core performance engineering can be.
Tutorial goals/Audience takeaways
After completing this tutorial, attendees will
· have a good grasp of the our-of-order processing capabilities of modern server CPUs, specifically x86 and Arm-based server processors such as the Intel Sapphire Rapids and Fujitsu A64FX CPUs,
· understand the concepts of instruction latency, instruction throughput, loop body critical path, and loop-carried dependencies and how they impact loop kernel performance,
· understand how SIMD instructions (i.e., vectorized code) can boost performance and how SIMD and pipelining/out-of-order processing interact,
· be able to work with compiler-generated assembly code,
· be able to employ Godbolt’s Compiler Explorer and the OSACA tool for loop-level in-core performance analysis and modeling,
· understand the impact of in-core execution on the performance of important algorithms from computational science such as sparse solvers, preconditioners, and Lattice QCD,
· understand the limitations of the demonstrated modeling approaches.
Requirements for participants
In order to do the hands-on exercises, attendees should bring a laptop computer with an up-to-date web browser (e.g., Firefox or Chrome).
A stable Wi-Fi connection is required.
Detailed outline of tutorial
· 11:00 Introduction
· 11:10 Basic processor and core architecture
· Intel Sapphire Rapids architecture
· Scheduling in an out-of-order backend
· 11:30 Terminology and code execution on out-of-order CPUs
· Throughput, Latency, Critical Path and Loop-carried Dependencies
· Hands-on: Out-of-order code execution
· 12:30 x86 ISA introduction
· Understanding scalar and vectorized assembly code
· 1:15 Performance analysis of simple kernels part I
· Example: STREAM Triad
1:30 Lunch
· 2:30 Performance analysis of simple kernels part II
· Hands-on: Dot product
· Hands-on: PI by integration
· 3:00 OSACA introduction
· How to use OSACA
· How to use the Compiler Explorer
· Analyze kernels using OSACA to find potential bottlenecks
· 3:40 In-core analysis for Arm
· Fujitsu A64FX core architecture
· AArch64 ISA introduction
· Understanding scalar and vectorized Arm assembly
4:00 Break
· 4:30 Case study: Sparse Matrix-Vector (SpMV) Multiplication on A64FX
· 5:10 Case study: Lattice Quantum Chromodynamics (QCD) on A64FX
· 5:40 Hands-on: 2D Gauss-Seidel on SPR
· Performance analysis
· Optimization techniques
· Performance impact of different compilers and flags
· 5:55 Summary and take-home messages
6:00 End of tutorial

