# New Algorithmic Results for Scheduling via Intger Linear Programming

Klaus Jansen, University of Kiel

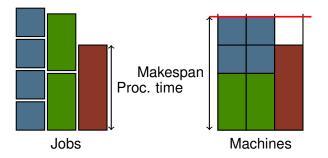
Joint Work with Sebastian Berndt, Lin Chen, Max Deppert, Kim-Manuel Klein, Lars Rohwedder, José Verschae and Gouchuan Zhang

### Scheduling on Identical Machines $P||C_{max}$ :

Given: n jobs with processing times p<sub>i</sub>

and m machines

Objective: Minimize makespan (maximum machine load)



## Complexity

- Strongly NP-hard
- If  $P \neq NP$ , then there is no FPTAS (with running time polynomial in  $\frac{1}{\varepsilon}$ )
- If the *Exponential Time Hypothesis* holds, there is no EPTAS with running time  $2^{(\frac{1}{\varepsilon})^{1-\delta}} + \text{poly}(n)$  [Chen, Jansen, Zhang '13]

## **Approximation Schemes**

#### There is a PTAS with running time:

$$n^{O(\frac{1}{\varepsilon^2})}$$
 [Hochbaum & Shmoys '87]

### There is an EPTAS with running time:

$$2^{\widetilde{O}(\frac{1}{\varepsilon^2})} + O(n \log n)$$
 [Jansen '10]

▶ 
$$2^{O(\frac{1}{\varepsilon}\log^4(\frac{1}{\varepsilon}))} + O(n\log n)$$
 [Jansen, Klein, Verschae '16]

$$ightharpoonup 2^{O(\frac{1}{\varepsilon}\log^2(\frac{1}{\varepsilon}))} + O(n)$$
 [Jansen, Rohwedder '19]

[Berndt, Deppert, Jansen, Rohwedder '22]

### General Strategy:

#### General scheme for designing a PTAS:

- 1. Guess the makespan *T* of the optimal solution.
- 2. Round instance  $\rightsquigarrow$   $(1 + \varepsilon)$  multiplicative loss in objective.
- 3. Solve the rounded instance using an ILP formulation.

## Rounding:

#### Lemma (Rounding and scaling)

 $T=1/\varepsilon^2$  and jobs sizes belong to  $\Pi=\{\pi_1,\ldots,\pi_d\}$ :

- ▶  $\Pi \subseteq \{\frac{1}{\varepsilon}, \frac{1}{\varepsilon} + 1, \dots, \frac{1}{\varepsilon^2}\}$  and,  $\rightarrow$  integer numbers
- $|\Pi| = O(\frac{1}{\varepsilon} \log(\frac{1}{\varepsilon})) = \widetilde{O}(\frac{1}{\varepsilon}). \longrightarrow \text{few sizes}$



### Configurations:

A *configuration* represents one possibility of assigning jobs from  $\Pi$  to a single machine.

Example (The set of configurations)

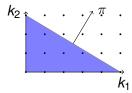
$$\mathcal{K} = \left\{ \begin{bmatrix} \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} \end{bmatrix}, \begin{bmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{I} \end{bmatrix}, \dots \right\}$$

## Configurations:

### Knapsack polytope

$$P = \{ k \in \mathbb{R}_{\geq 0}^{|\Pi|} : k^t \cdot \pi \leq T \}$$

### Polyhedral view



## Configurations:

#### Set of configurations

$$K:=P\cap\mathbb{Z}_{\geq 0}^{|\Pi|}$$

#### Observation 1

$$|K| \leq (T+1)^{|\Pi|} = 2^{O(\frac{1}{\epsilon}\log^2(\frac{1}{\epsilon}))} = 2^{\widetilde{O}(\frac{1}{\epsilon})}.$$

## Integer Programming Formulation

#### Observation 2:

The vector  $(x_k)_{k \in K}$  belongs to the system

$$\left. \begin{array}{ll} \displaystyle \sum_{k \in K} x_k &= m \\ \displaystyle \sum_{k \in K} k_i x_k &= n_i \quad \text{for all } \pi_i \in \Pi \\ x &\in \mathbb{Z}_{\geq 0}^K \end{array} \right\} \quad \text{\# of constraints} = \widetilde{O}(\frac{1}{\varepsilon}) \\ \text{\# variables} = 2^{\widetilde{O}(\frac{1}{\varepsilon})}$$

### Solving the ILP, first Approach:

Method [Alon et al. '98] and [Hochbaum & Shmoys '97] uses

### Theorem [Kannan '87 / Lenstra '83]

An integer program with N variables can be solved in time  $2^{\widetilde{O}(N)} s$  (where s is the length of the input).

In our case  $N=|K|=2^{\widetilde{O}(\frac{1}{\varepsilon})}$  and thus the running time is

$$2^{\widetilde{O}(N)}\log(n) = 2^{2^{\widetilde{O}(\frac{1}{\varepsilon})}}\log(n) \leftarrow \text{doubly exponential!}$$

Main Idea: Try to reduce the number of variables.

### Solving the ILP, second Approach:

Guess the support [Jansen '10]

### Theorem [Eisenbrand & Shmonin '06]

There is an optimum sol.  $x^*$  for  $\{c^tx : Ax = b, x \ge 0, x \text{ integer}\}$  s.t.  $|\text{support}(x^*)| \le O(M(\log(M \cdot \Delta)))$  where

- M = number of constraints,
- $ightharpoonup \Delta$  = largest coefficient in A, c.

#### In our case:

- $M = |\Pi| = \widetilde{O}(\frac{1}{\varepsilon})$ , and  $\Delta = \frac{1}{\varepsilon}$
- ▶  $|\mathsf{support}(x^*)| \leq \widetilde{O}(\frac{1}{\varepsilon})$

### Solving the ILP, second Approach:

Guess the support [Jansen '10]

#### Algorithm:

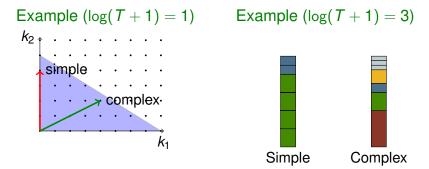
- 1. Try each possible support: there are  $\widetilde{O}(\frac{1}{\varepsilon}) \cdot \binom{|K|}{\widetilde{O}(\frac{1}{\varepsilon})} = 2^{\widetilde{O}(\frac{1}{\varepsilon^2})}$  many.
- 2. Solve ILP restricted to guessed variables with Kannan's algorithm (running time  $2^{\widetilde{O}(\frac{1}{\varepsilon})}\log(n)$ )
- 3. Total running time:  $2^{\tilde{O}(\frac{1}{\varepsilon^2})} \log(n)$ .

### Solving the ILP, third Approach:

Understanding the Optimum

#### Definition

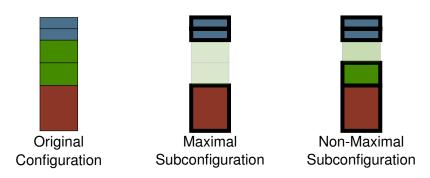
A configuration k is *complex* if it contains more than log(T + 1) different sizes; o.w. it is *simple*.



## Solving the ILP, third Approach:

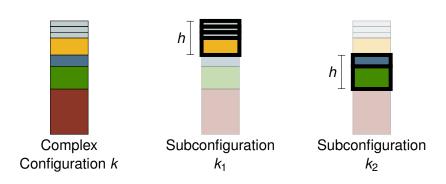
#### Understanding the Optimum

A "subconfiguration"  $k' \le k$  of configuration k is called *maximal* if it contains all possible jobs of each taken size.



#### Lemma

Every complex conf.  $k \in K$  contains two maximal disjoint subconfigurations  $k_1, k_2$  s.t. the total size of  $k_1$  and  $k_2$  coincide.



#### Lemma

Every complex conf.  $k \in K$  contains two maximal disjoint subconfigurations  $k_1, k_2$  s.t.  $\pi \cdot k_1 = \pi \cdot k_2$ .

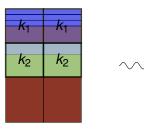
#### Proof.

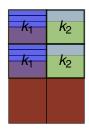
- Let  $C > \log(T + 1)$  be the number of sizes (colors) in k.
- Number of maximal subconfigurations =  $2^C > T + 1$ .
- ▶ Total size of each configuration is in  $\{0, 1, 2, ..., T\}$ .
- Pigeonhole principle ⇒ there are two maximal subconfigurations of same total size.

## Solving the ILP, third Approach:

### Lemma (Sparsification Lemma (informal))

If a complex configuration is taken twice in a solution, then we can replace it by two other "less complex" configurations.



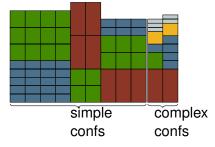


### Solving the ILP, third Approach:

#### Theorem (Thin solutions)

If the ILP is feasible, then there is a solution  $x^*$  such that:

- At most  $\widetilde{O}(\frac{1}{\varepsilon})$  machines get complex configurations.
- Each complex configuration is used at most once.
- ▶  $|support(x^*)| \le O(|\Pi|\log(|\Pi|T)) = \widetilde{O}(\frac{1}{\varepsilon}).$



#### Lemma

The number of simple configurations in K is  $2^{O(\log^2(\frac{1}{\epsilon}))} = 2^{\widetilde{O}(1)}$ .

#### Proof.

Let  $D = \log(T + 1)$  and  $T = 1/\varepsilon^2$ .

# simple conf 
$$\leq \sum_{i=0}^{D} \binom{|\Pi|}{i} \times (T+1)^{i}$$
  
 $\leq (D+1)|\Pi|^{D} \times (T+1)^{D}$   
 $\leq (\frac{1}{\varepsilon}\log(\frac{1}{\varepsilon}))^{O(\log(\frac{1}{\varepsilon}))}$   
 $\leq 2^{O(\log^{2}(\frac{1}{\varepsilon}))} \leq 2^{\widetilde{O}(1)}$ .

### Solving the ILP, third Approach:

Algorithm

#### Part 1: Complex Configurations.

- 1. Guess jobs assigned to complex configurations and number of complex machines.
- 2. Solve that subinstance optimally with a dynamic program.

## Solving the ILP: Third Approach

Algorithm

Part 2: Remaining Instance.

1. Guess the (simple!) configurations in support:

# possibilities 
$$\leq \binom{2^{\widetilde{O}(1)}}{\widetilde{O}(\frac{1}{\varepsilon})} = 2^{\widetilde{O}(\frac{1}{\varepsilon})}$$

2. For each possibility solve the ILP restricted to those variables with Kannan's algorithm.

Total running time:  $2^{\widetilde{O}(\frac{1}{\varepsilon})} \log(n)$ 

#### Main Result:

Algorithm

Theorem [Jansen, Klein, Verschae '16]

The minimum makespan problem on identical machines admits an EPTAS with running time

$$2^{O(\frac{1}{\varepsilon}\log^4(\frac{1}{\varepsilon}))} + O(n\log n) = 2^{\widetilde{O}(\frac{1}{\varepsilon})} + O(n\log n).$$

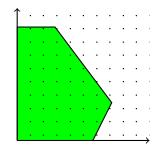
## New Techniques via ILPs

$$\max c^t x$$

$$Ax = b$$

$$x \in \mathbb{Z}_{\geq 0}^n$$

where  $A \in \mathbb{Z}^{M \times N}$ ,  $b \in \mathbb{Z}^{M}$ ,  $c \in \mathbb{Z}^{N}$ .



#### Considered case

*M* (#constraints) is a constant, entries of *A* are small ( $\leq \Delta$ ).

## Pseudo-Polynomial Algorithms for ILPs

#### **Known Algorithms**

There is an algorithm for ILPs with running time:

- $(M(\Delta + ||b||_{\infty}))^{O(M^2)}$  [Papadimitrou '81]
- $ightharpoonup N \cdot O(M\Delta)^{2M} \cdot \|b\|_{\infty}^{2}$ . [Eisenbrand & Weismantel '18]

#### Theorem [Jansen & Rohwedder ITCS 19]

ILPs can be solved in time  $O(M\Delta)^{2M} \cdot (1 + \log(\|b\|_{\infty}))/\log(\Delta) + O(NM)$ . Moreover, improving the exponent to  $2M - \delta$  is equivalent to finding a truly subquadratic algorithm for (min, +)-convolution.

## Feasibility Problem

Theorem [Jansen & Rohwedder, ITCS 19]

Algorithm for feasibility with running time:  $O(M\Delta)^M \cdot \log(\Delta) \cdot \log(\Delta + \|b\|_{\infty}) + O(NM)$ . Improving exponent to  $M - \delta$  would contradict the Strong Exponential Time Hypothesis (SETH).

## Application $P||C_{max}|$

#### Configuration ILP for large jobs

$$\sum_{k \in K} x_k = m$$

$$\sum_{k \in K} k_i x_k = n_i \quad \forall \pi_i \in \Pi$$

$$x_k \in \mathbb{Z}_{\geq 0} \qquad \forall k \in K$$

has  $M+1=O(\frac{1}{\epsilon}\log(\frac{1}{\epsilon}))$  constraints and  $N=|K|=2^{O(\frac{1}{\epsilon})}$  many variables. The value  $\Delta=\max_{k,i}k_i\leq \frac{1}{\epsilon}$  and  $\|b\|_{\infty}\leq n$ .

**New result:** Including preprocessing  $O(n + \frac{1}{\epsilon} \log(\frac{1}{\epsilon}))$ , we get:

$$2^{O(\frac{1}{\epsilon}\log^2(\frac{1}{\epsilon}))} + O(n).$$

## Main Underlying Idea

#### Theorem [Steinitz]

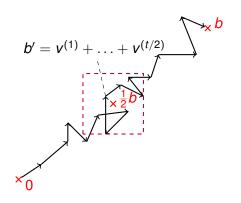
Let  $\|\cdot\|$  be a norm in  $\mathbb{R}^M$  and  $v^{(1)},\ldots,v^{(t)}\in\mathbb{R}^M$  with  $\|v^{(i)}\|\leq 1$   $\forall i$  and  $v^{(1)}+\cdots+v^{(t)}=0$ . Then there is a permutation  $\pi\in S_t$  with  $\|\sum_{i=1}^j v^{(\pi(i))}\|\leq M$  for all  $j=1,\ldots,t$ .

#### Corollary

Let  $v^{(1)}, \dots, v^{(t)}$  denote columns of matrix A with  $\sum_{i=1}^t v^{(i)} = b$  and entries bounded by  $\Delta$ . Then there exists a permutation  $\pi \in S_t$  such that for all  $j \in \{1, \dots, t\}$ 

$$\left\| \sum_{i=1}^{j} v^{(\pi(i))} - j \cdot b/t \right\|_{\infty} \leq 2M\Delta.$$

## Our First Approach



Let  $v^{(1)} + ... + v^{(t)} = b$  be columns corresponding to an optimal solution of (IP).

#### Equivalent:

$$v^{(1)} + \ldots + v^{(t/2)}$$
 is optimal for

$$\{\max c^t x, Ax = b', x \in \mathbb{Z}_{\geq 0}^N\}$$

and 
$$v^{(t/2+1)} + ... + v^{(t)}$$
 is for

$$\{\max c^t x, Ax = b - b', x \in \mathbb{Z}_{\geq 0}^N\}.$$

If ordered via Steinitz Lemma, b' and b - b' are not far from  $\frac{1}{2}b$ .

### **Dynamic Program**

Solve for every  $i=0,1,\ldots,\ell=O(M\log(M\Delta)+\log(\|b\|_{\infty}))$  and every  $b'\in\mathbb{Z}^M$  with

$$\left\|b'-\frac{1}{2^{\ell-i}}b\right\|_{\infty}\leq 4M\Delta$$

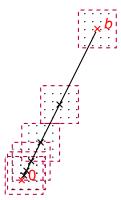
the problem

$$\max_{Ax = b'} c^t x$$

$$\|x\|_1 = 2^i$$

$$x \in \mathbb{Z}_{>0}^N.$$

Original problem for  $i = \ell$  and b' = b.



## Second Approach via Discrepancy

#### Definition

For a matrix  $A \in \mathbb{Z}^{M \times N}$  the **discrepancy** is

$$disc(A) = \min_{z \in \{0,1\}^N} \left\| A(z - (\frac{1}{2}, \dots, \frac{1}{2})^T) \right\|_{\infty}.$$

The **hereditary discrepancy** of a matrix  $A \in \mathbb{Z}^{M \times N}$  is

$$herdisc(A) = \max_{I \subseteq \{1,...,N\}} disc(A_I)$$

where  $A_I$  denotes A restricted to the columns in I.

## Results for Discrepancy

### Theorem [Spencer '85]

For every matrix  $A \in \mathbb{R}^{M \times N}$  with biggest absolute value of an entry bounded by  $\Delta$ 

$$herdisc(A) \leq 6\sqrt{M}\Delta$$
.

#### Theorem [Beck, Fiala '81]

For every matrix  $A \in \mathbb{R}^{M \times N}$ , where the  $\|.\|_1$  norm of any column of A is at most t it holds

$$herdisc(A) < t$$
.

### Discrepancy instead of Steinitz

**Main Idea:** Split the  $\|.\|_1$  norm of a solution.

#### Lemma

Let  $x \in \mathbb{Z}_{\geq 0}^N$ . Then there is a vector  $z \in \mathbb{Z}_{\geq 0}^N$  with  $z_i \leq x_i$  for all i = 1, ..., N and

$$\left\|A(z-\frac{x}{2})\right\|_{\infty} \leq herdisc(A).$$

Furthermore, if  $||x||_1 > 1$  then there is a vector z' as above with  $1/6||x||_1 \le ||z'||_1 \le 5/6||x||_1$ 

$$\left\|A(z'-\frac{x}{2})\right\|_{\infty}\leq 2\cdot herdisc(A).$$

### Modified Dynamic Program

Let  $x^*$  be an optimum solution with  $||x^*||_1 \le K$  and let H be an upper bound for herdisc(A).

Solve for every  $i = 0, \dots, \ell = \lceil \log_{6/5}(K) \rceil$  and every  $b' \in \mathbb{Z}^M$  with

$$\left\|b'-\frac{1}{2^{\ell-i}}b\right\|_{\infty}\leq 4H$$

the problem

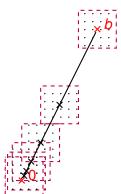
$$\max c^{t}x$$

$$Ax = b'$$

$$\|x\|_{1} \leq (6/5)^{i}$$

$$x \in \mathbb{Z}_{>0}^{N}.$$

Original problem for  $i = \ell$  and b' = b.



## Improved Results

Let H be an upper bound for herdisc(A).

Theorem [Jansen & Rohwedder, MOR 22]

ILPs can be solved in time  $O(H)^{2M} \cdot M \cdot \log(M\Delta) / \log(\Delta) + LP$ .

Theorem [Jansen & Rohwedder, MOR 22]

The feasibility problem for ILPs can be solved in time:

 $O(H)^M \cdot \log(\Delta) \cdot M \cdot \log(M\Delta) + LP$ .

## Improved Algorithm for $P||C_{max}|$

Using a specific rounding for large jobs and replacing configurations k with  $\|k\|_1 > 2\log(1/\epsilon)$  we obtain a **modified** Configuration ILP with matrix A' for  $P||C_{max}$  with

$$herdisc(A') \leq O(\log(1/\epsilon)).$$

This implies

Theorem [Berndt, Deppert, J., Rohwedder ALENEX 22]

The minimum makespan problem on identical machines admits an EPTAS with running time

$$2^{O(\frac{1}{\epsilon}\log(\frac{1}{\epsilon})\log\log(\frac{1}{\epsilon}))} + O(n).$$

### Rounding scheme

- 1. let *T* be a makespan guess
- 2. discard *small* jobs with  $p_j \le \varepsilon T$  and *huge* jobs with  $p_j \ge (1 2\varepsilon)T$
- 3. we know  $p_j \in (\varepsilon T, (1-2\varepsilon)T)$
- 4. split this into  $\log(1/\varepsilon)$  growing intervals  $I_i = [2^i \varepsilon T, 2^{i+1} \varepsilon T)$  for  $\varepsilon = 1/6, T = 1$  we get the growing intervals  $I_0 = [1/6, 1/3), I_1 = [1/3, 2/3)$
- 5. split these intervals into  $1/\varepsilon$  many equally sized intervals the growing intervals [1/6,1/3) and [1/3,2/3) are split into smaller intervals with the following boundaries:

$$\frac{1}{6}, \ \frac{1}{6} + \frac{1}{36}, \ \frac{1}{6} + \frac{2}{36}, \ \frac{1}{6} + \frac{3}{36}, \ \frac{1}{6} + \frac{4}{36}, \ \frac{1}{6} + \frac{5}{36}, \\ \frac{1}{3}, \ \frac{1}{3} + \frac{1}{18}, \ \frac{1}{3} + \frac{2}{18}, \ \frac{1}{3} + \frac{3}{18}, \ \frac{1}{3} + \frac{4}{18}, \ \frac{1}{3} + \frac{5}{18}.$$

- 6. round remaining job processing times to the next lower boundary
- 7. two boundaries (of equal parity) of a growing interval sum up to a boundary in the next growing interval, e.g.

$$(1/6 + 1/36) + (1/6 + 3/36) = 1/3 + 2/18$$

### Simplification of the Configuration ILP

$$\sum_{k \in \mathcal{K}} x_k = m$$

$$\sum_{k \in \mathcal{K}} x_k \cdot k_{i,j} = n_{i,j} \quad \forall (i,j)$$

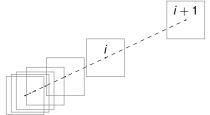
$$x_k \in \mathbb{Z}_{\geq 0} \quad \forall k \in \mathcal{K}$$

For each feasible configuration k with  $||k||_1 > 2 \cdot \log(1/\varepsilon)$ :

 $\Rightarrow$  There is a growing interval i and two indices j,j' of the same parity with  $k_{i,j} \geq 1$  and  $k_{i,j'} \geq 1$  if  $j \neq j'$  and  $k_{i,j} \geq 2$  otherwise. Decrement each  $k_{i,j}$  and  $k_{i,j'}$  by one while incrementing  $k_{i+1,\frac{j+j'}{2}}$  by one without breaking the feasibility of k or even altering its total load. This decreases  $||k||_1$ .

#### Convolution via FFT

- Think about the dynamic table entries as coefficients of multivariate polynomials
- ▶ Given the *i*-th dynamic table, we can compute the (i + 1)-th dynamic table by computing the polynomial product of the *i*-th table with itself



Can be done efficiently using the Fast Fourier Transformation (FFT)

Compute  $O(\log(n))$  many FFTs on input of size  $(\log(1/\varepsilon))^{O(1/\varepsilon\log(1/\varepsilon))}$  which yields total running time

$$2^{O(1/\varepsilon \log(1/\varepsilon)\log\log(1/\varepsilon))}\log(n) + O(n).$$

### Implementation

- ► The code is available on: github.com/made4this/BDJR
- ▶ Implemented in C++ for  $\varepsilon \approx$  17.29%
- Parallelization with OpenMP in version 5.0
- FFT computations with FFTW3 in version 3.3.8
- 9000 experimental instances first used by Kedia in 1971
- Experiments computed in the HPC Linux Cluster of Kiel University using 16 cpu cores and 100GB of memory per instance.

#### Conclusion

#### **Recent Work**

- ▶ Improvements of our implementation for  $P||C_{max}$ .
- ▶ Improved EPTAS for  $Q||C_{max}$  with support bound for integral variables in MILP formulation.
- Parameterized algorithm for  $Q||C_{max}$  with d item sizes and maximum processing time  $p_{max}$ .

#### Conclusion

#### **Open Questions**

- ▶ Improved EPTAS for  $P||C_{max}$  with running time  $2^{O(1/\epsilon)} + O(n)$ .
- ▶ Improve lower bound of EPTASs for  $P||C_{max}$ .