New Algorithmic Results for Scheduling via Intger
Linear Programming

Klaus Jansen, University of Kiel

Joint Work with Sebastian Berndt, Lin Chen, Max Deppert,
Kim-Manuel Klein, Lars Rohwedder, José Verschae and
Gouchuan Zhang

Scheduling on Identical Machines P||Cpax:

» Given: n jobs with processing times p;

» and m machines

» Objective: Minimize makespan (maximum machine load)

Makespan
Proc. time

Jobs

Machines

Complexity

» Strongly NP-hard

» If P # NP, then there is no FPTAS (with running time
polynomial in 1)

» If the Exponential Time Hypothesis holds, there is no

EPTAS with running time 2(3)'~° + poly(n) [Chen, Jansen,
Zhang '13]

Approximation Schemes

There is a PTAS with running time:

» o2 [Hochbaum & Shmoys '87]
There is an EPTAS with running time:

» 22°%) L O(nlog n) [Alon et al. '98 & H. & S. '96]

> 2002) | O(nlogn) [Jansen *10]

» 202 1ee*(2) 4 O(nlog n) [Jansen, Klein, Verschae '16]

» 200218’ (D) 1 O(n) [Jansen, Rohwedder '19]

» 20(1 log(?)loglog(1)) o(n)

[Berndt, Deppert, Jansen, Rohwedder '22]

General Strategy:

General scheme for designing a PTAS:
1. Guess the makespan T of the optimal solution.
2. Round instance ~ (1 +) multiplicative loss in objective.
3. Solve the rounded instance using an ILP formulation.

Rounding:

Lemma (Rounding and scaling)
T =1/¢? and jobs sizes belong to N = {rq,...,mq}:
>»nc{l,l+1,..., %} and, — integer numbers

> M| = O0(1log(1)) = 5(%). — few sizes

| | | | | | |

| | | | | | |
o= 2
N

N 3
O 1
RN
I
IR
-
.
[

Configurations:

A configuration represents one possibility of assigning jobs
from [T to a single machine.

Example (The set of configurations)

Configurations:

Knapsack polytope

P={keRl ki .n<T)

Polyhedral view

Configurations:

Set of configurations

K;:szg‘)

Observation 1

K| < (T +1)M = 20 10g*(1)) — 20(),

Integer Programming Formulation

Observation 2:
The vector (x)kek belongs to the system

ZXK =m

kek # of constraints = O(1)
> kixxe =n; forallmen # variables = 20()
keK

x €1z,

Solving the ILP, first Approach:

Method [Alon et al. '98] and [Hochbaum & Shmoys '97] uses

Theorem [Kannan '87 / Lenstra '83]
An integer program with N variables can be solved in time
20(N) s (where s is the length of the input).

In our case N = |K| = 2°(2) and thus the running time is

~ 51
20N og(n) = 227 log(n) < doubly exponentiall

Main Idea: Try to reduce the number of variables.

Solving the ILP, second Approach:

Guess the support [Jansen ’10]

Theorem [Eisenbrand & Shmonin ’06]
There is an optimum sol. x* for {c!x : Ax = b, x > 0, x integer}
s.t. |[support(x*)| < O(M(log(M - A)) where

» M = number of constraints,

» A = largest coefficient in A, c.

In our case:
> M=nNj=0(!),and A =1
> |support(x*)| < 5(%)

Solving the ILP, second Approach:

Guess the support [Jansen ’10]

Algorithm:

1.

Try each possible support: there are CNJ(%) . (éﬁ)) _ 20()
many.

Solve ILP restricted to guessed variables with Kannan’s
algorithm (running time 2°(3) log(n))

Total running time: 26(}2) lo
1272 log(n).

Solving the ILP, third Approach:

Understanding the Optimum
Definition
A configuration k is complex if it contains more than log(T + 1)
different sizes; o.w. it is simple.

Example (log(T +1) =1) Example (log(T + 1) = 3)

Koy
- - - complex I i
ki

Simple Complex

Solving the ILP, third Approach:

Understanding the Optimum
A “subconfiguration” k” < k of configuration k is called maximal
if it contains all possible jobs of each taken size.

Original Maximal Non-Maximal
Configuration Subconfiguration Subconfiguration

Lemma
Every complex conf. k € K contains two maximal disjoint
subconfigurations ky, ko s.t. the total size of ki and ko coincide.

Complex Subconfiguration Subconfiguration
Configuration k ki ko

Lemma
Every complex conf. k € K contains two maximal disjoint
subconfigurations Ky, ko s.t. - ky = 7 - ko.

Proof.
» Let C > log(T + 1) be the number of sizes (colors) in k.
» Number of maximal subconfigurations = 2¢ > T + 1.
> Total size of each configuration isin {0,1,2,..., T}.

» Pigeonhole principle = there are two maximal
subconfigurations of same total size.

Solving the ILP, third Approach:

Lemma (Sparsification Lemma (informal))

If a complex configuration is taken twice in a solution, then we
can replace it by two other “less complex” configurations.

Solving the ILP, third Approach:

Theorem (Thin solutions)

If the ILP is feasible, then there is a solution x* such that:
» At most 5(%) machines get complex configurations.
» Each complex configuration is used at most once.
> |support(x*)| < O(|N|log(IN| T)) = O(1).

— —
simple complex
confs confs

Lemma o _
The number of simple configurations in K is 20(1°g”(2)) = 20(1)

Proof.
Let D =log(T +1)and T = 1/£2.
= (I -
simple conf <> (> (T+1)
i=0

< (D+1)N|P x (T+1)P
< (L log(1)es2)

< 20(log*(1)) < 9O(1).

Solving the ILP, third Approach:

Algorithm

Part 1: Complex Configurations.

1. Guess jobs assigned to complex configurations and
number of complex machines.

2. Solve that subinstance optimally with a dynamic program.

Solving the ILP: Third Approach

Algorithm

Part 2: Remaining Instance.
1. Guess the (simple!) configurations in support:

o(1) N
possibilities < (%(1)) —20(})

£

2. For each possibility solve the ILP restricted to those
variables with Kannan’s algorithm.

Total running time: 2°() log(n)

Main Result:
Algorithm

Theorem [Jansen, Klein, Verschae ’16]

The minimum makespan problem on identical machines admits
an EPTAS with running time

20(21og"(2) 4 O(nlog n) = 29(2) + O(nlog n).

New Techniques via ILPs

max CtX
Ax=b
n
X € Zx

where A€ ZM*N pc ZM ¢ e ZN.

Considered case
M (#constraints) is a constant, entries of A are small (< A).

Pseudo-Polynomial Algorithms for ILPs

Known Algorithms

There is an algorithm for ILPs with running time:
> (M(A + ||b]oo))OM) [Papadimitrou "81]
> N-O(MAYM . |p|2.. [Eisenbrand & Weismantel 18]

Theorem [Jansen & Rohwedder ITCS 19]

ILPs can be solved in time

O(MAYM . (1 + log(||b]ls))/ log(A) + O(NM). Moreover,
improving the exponent to 2M — ¢ is equivalent to finding a truly
subquadratic algorithm for (min, +)-convolution.

Feasibility Problem

Theorem [Jansen & Rohwedder, ITCS 19]

Algorithm for feasibility with running time:

O(MA)M - log(A) - log(A + ||b]|s) + O(NM). Improving
exponent to M — ¢ would contradict the Strong Exponential
Time Hypothesis (SETH).

Application P||Cmax

Configuration ILP for large jobs

D_kek Xk =M
ZkeK k,‘Xk =N Vﬂ',‘ el
XKk € ZZO Vke K

has M+1 = O(! log(1)) constraints and N = |K| = 2°(2) many
variables. The value A = max;k; < and ||bo < n.

New result: Including preprocessing O(n + % Iog(})), we get:

20(1log?(1)) - o(n).

Main Underlying Idea

Theorem [Steinitz]

Let ||-|| be a normin RM and v(V) ... v() ¢ RM with ||v()|| < 1
viand v(Y) + ... 4 v{)) = 0. Then there is a permutation = € S;
with |3, v D) < Mforallj=1,...,t.

Corollary

Let v("), ..., v() denote columns of matrix Awith >>/_, v() = b
and entries bounded by A. Then there exists a permutation

m € Sysuchthatforallje {1,...,t}

j
SO byt

i=1

< 2MA.

[e.o]

Our First Approach

Let v() + ...+ v() = pbe
columns corresponding to an
optimal solution of (IP).

Equivalent:
v 4+ + v(t/2) is optimal for

{maxcix,Ax=b,x € Z O}

and v(t/2+1) 1 4+ v() s for

0 {maxc!x,Ax =b—b/,x e ZY S0

If ordered via Steinitz Lemma, b’ and b — b’ are not far from %b.

Dynamic Program

Solve forevery i = 0,1,...,¢ = O(Mlog(MA) + log(||b||~)) and
every b’ € ZM with

1
the problem /77
maxcx Tt
Ax = b/ Vi
Ixl =2 ol
xel, i

Original problem for j = ¢ and b’ = b. Y

Second Approach via Discrepancy

Definition
For a matrix A € ZM*N the discrepancy is

disc(A) = min

Az (=,)T
i (2= (500 5)")

The hereditary discrepancy of a matrix A € ZM*N s

herdisc(A) = IC{TaXN} disc(A))

where A, denotes A restricted to the columns in /.

Results for Discrepancy

Theorem [Spencer '85]

For every matrix A € RM*N with biggest absolute value of an
entry bounded by A

herdisc(A) < 6V MA.

Theorem [Beck, Fiala '81]

For every matrix A € RM*N where the |.||; norm of any column
of Ais at most ¢ it holds

herdisc(A) < t.

Discrepancy instead of Steinitz

Main Idea: Split the ||.||1 norm of a solution.

Lemma
Let x € ZY,. Then there is a vector z € Z, with z; < x; for all
i=1,...,Nand B

HA(z — g)H < herdisc(A).

o0

Furthermore, if || x||1> 1 then there is a vector z’ as above with
1/6[Ix[l1 < [[Z'[l1 < 5/6]|x]|1

HA(z’ - g)H < 2. herdisc(A).

[e.e]

Modified Dynamic Program
Let x* be an optimum solution with ||x*||y < K and let H be an
upper bound for herdisc(A).
Solve for every i =0,...,¢ = [logg5(K)] and every b’ € ZM
with

Vpl <aw T

b' - ol

< 4H

.

the problem

maxclx TS
Ax =t/ Vi
X[+ < (8/5)'
X € Zgo. i

Original problem for j = ¢ and b’ = b. jorss)

Improved Results

Let H be an upper bound for herdisc(A).

Theorem [Jansen & Rohwedder, MOR 22]
ILPs can be solved in time O(H)?M - M - log(MA)/ log(A) + LP.

Theorem [Jansen & Rohwedder, MOR 22]

The feasibility problem for ILPs can be solved in time:
O(H)M - log(A) - M - log(MA) + LP.

Improved Algorithm for P||Cpax

Using a specific rounding for large jobs and replacing
configurations k with || k||1 > 2log(1/¢) we obtain a modified
Configuration ILP with matrix A’ for P||Cmax with

herdisc(A") < O(log(1/¢)).

This implies
Theorem [Berndt, Deppert, J., Rohwedder ALENEX 22]

The minimum makespan problem on identical machines admits
an EPTAS with running time

20(% log(1) loglog(1)) - o(n).

Rounding scheme
1. let T be a makespan guess
2. discard small jobs with p; < T and huge jobs with p; > (1 — 2¢)T
3. we know p; € (T, (1 —2¢)T)
4. split this into log(1/¢) growing intervals I; = [2' T, 21 T)
fore =1/6, T = 1 we get the growing intervals
Ih=1[1/6,1/3),h =[1/3,2/3)
5. split these intervals into 1/e many equally sized intervals
the growing intervals [1/6,1/3) and [1/3,2/3) are split into smaller
intervals with the following boundaries:

w|= o=

6. round remaining job processing times to the next lower boundary

7. two boundaries (of equal parity) of a growing interval sum up to a
boundary in the next growing interval, e.g.
(1/6+1/36) +(1/6 +3/36) =1/3+2/18

Simplification of the Configuration ILP

Zxk:m

kex
Z Xk - k,'yj =N, V(I,j)
ke
Xk € ZZO Vk e K

For each feasible configuration k with || k|[1 > 2 - log(1/e):

= There is a growing interval i and two indices of the same parity
with k;; > 1 and ki > 1if j # j' and k;; > 2 otherwise. Decrement each k;
and k; ; by one while incrementing ki+ N by one without breaking the
feasibility of k or even altering its total load. This decreases | k||1.

Convolution via FFT

» Think about the dynamic table entries as coefficients of multivariate
polynomials

» Given the i-th dynamic table, we can compute the (i + 1)-th dynamic
table by computing the polynomial product of the i-th table with itself
i+1

-~

» Can be done efficiently using the Fast Fourier Transformation (FFT)

Compute O(log(n)) many FFTs on input of size
(log(1/¢))C(1/=loe(1/)) which yields total running time

20(1/5 log(1/¢) loglog(1/¢)) Iog(n) + O(n)

Implementation

v

The code is available on:
github.com/maded4this/BDJR

Implemented in C++ for e ~ 17.29%

Parallelization with OpenMP in version 5.0

FFT computations with FFTW3 in version 3.3.8

9000 experimental instances first used by Kedia in 1971

Experiments computed in the HPC Linux Cluster of Kiel
University using 16 cpu cores and 100GB of memory per
instance.

vVvYyyvyy

https://github.com/made4this/BDJR

Conclusion

Recent Work
» Improvements of our implementation for P||Cpmax.

» Improved EPTAS for Q||Cmax with support bound for
integral variables in MILP formulation.

» Parameterized algorithm for Q||Cmax With d item sizes and
maximum processing time pmax.

Conclusion

Open Questions

» Improved EPTAS for P||Cmax With running time
20(1/9) 4 O(n).
» Improve lower bound of EPTASSs for P||Cpmax-

