
1

New Algorithmic Results for Scheduling via Intger
Linear Programming

Klaus Jansen, University of Kiel

Joint Work with Sebastian Berndt, Lin Chen, Max Deppert,
Kim-Manuel Klein, Lars Rohwedder, José Verschae and

Gouchuan Zhang

Scheduling on Identical Machines P||Cmax :

▶ Given: n jobs with processing times pj
▶ and m machines
▶ Objective: Minimize makespan (maximum machine load)

Proc. time
Makespan

Jobs Machines

Complexity

▶ Strongly NP-hard
▶ If P ̸= NP, then there is no FPTAS (with running time

polynomial in 1
ε)

▶ If the Exponential Time Hypothesis holds, there is no
EPTAS with running time 2(1

ε
)1−δ

+ poly(n) [Chen, Jansen,
Zhang ’13]

Approximation Schemes

There is a PTAS with running time:

▶ nO(1
ε2) [Hochbaum & Shmoys ’87]

There is an EPTAS with running time:

▶ 22Õ(1
ε)
+ O(n log n) [Alon et al. ’98 & H. & S. ’96]

▶ 2Õ(1
ε2) + O(n log n) [Jansen ’10]

▶ 2O(1
ε
log4(1

ε
)) + O(n log n) [Jansen, Klein, Verschae ’16]

▶ 2O(1
ε
log2(1

ε
)) + O(n) [Jansen, Rohwedder ’19]

▶ 2O(1
ε
log(1

ε
) log log(1

ε
)) + O(n)
[Berndt, Deppert, Jansen, Rohwedder ’22]

General Strategy:

General scheme for designing a PTAS:
1. Guess the makespan T of the optimal solution.
2. Round instance⇝ (1 + ε) multiplicative loss in objective.
3. Solve the rounded instance using an ILP formulation.

Rounding:

Lemma (Rounding and scaling)
T = 1/ε2 and jobs sizes belong to Π = {π1, . . . , πd}:
▶ Π ⊆ {1

ε ,
1
ε + 1, . . . , 1

ε2 } and, → integer numbers

▶ |Π| = O(1
ε log(

1
ε)) = Õ(1

ε). → few sizes

1
ε2

1
ε

Configurations:

A configuration represents one possibility of assigning jobs
from Π to a single machine.

Example (The set of configurations)

K = , , , . . .

Configurations:

Knapsack polytope

P = {k ∈ R|Π|
≥0 : k t · π ≤ T}

Polyhedral view

k1

k2 π

Configurations:

Set of configurations

K := P ∩ Z|Π|
≥0

Observation 1

|K | ≤ (T + 1)|Π| = 2O(1
ε
log2(1

ε
)) = 2Õ(1

ε
).

Integer Programming Formulation

Observation 2:
The vector (xk)k∈K belongs to the system

∑
k∈K

xk = m∑
k∈K

kixk = ni for all πi ∈ Π

x ∈ ZK
≥0


of constraints = Õ(1

ε)

variables = 2Õ(1
ε
)

Solving the ILP, first Approach:
Method [Alon et al. ’98] and [Hochbaum & Shmoys ’97] uses

Theorem [Kannan ’87 / Lenstra ’83]
An integer program with N variables can be solved in time
2Õ(N) s (where s is the length of the input).

In our case N = |K | = 2Õ(1
ε
) and thus the running time is

2Õ(N) log(n) = 22Õ(1
ε)

log(n)← doubly exponential!

Main Idea: Try to reduce the number of variables.

Solving the ILP, second Approach:
Guess the support [Jansen ’10]

Theorem [Eisenbrand & Shmonin ’06]
There is an optimum sol. x∗ for {ctx : Ax = b, x ≥ 0, x integer}
s.t. |support(x∗)| ≤ O(M(log(M ·∆)) where
▶ M = number of constraints,
▶ ∆ = largest coefficient in A, c.

In our case:
▶ M = |Π| = Õ(1

ε), and ∆ = 1
ε

▶ |support(x∗)| ≤ Õ(1
ε)

Solving the ILP, second Approach:
Guess the support [Jansen ’10]

Algorithm:

1. Try each possible support: there are Õ(1
ε) ·

(|K |
Õ(1

ε
)

)
= 2Õ(1

ε2)

many.
2. Solve ILP restricted to guessed variables with Kannan’s

algorithm (running time 2Õ(1
ε
) log(n))

3. Total running time: 2Õ(1
ε2) log(n).

Solving the ILP, third Approach:
Understanding the Optimum

Definition
A configuration k is complex if it contains more than log(T + 1)
different sizes; o.w. it is simple.

Example (log(T + 1) = 1)

k1

k2

simple

complex

Example (log(T + 1) = 3)

Simple Complex

Solving the ILP, third Approach:
Understanding the Optimum

A “subconfiguration” k ′ ≤ k of configuration k is called maximal
if it contains all possible jobs of each taken size.

Original
Configuration

Maximal
Subconfiguration

Non-Maximal
Subconfiguration

Lemma
Every complex conf. k ∈ K contains two maximal disjoint
subconfigurations k1, k2 s.t. the total size of k1 and k2 coincide.

Complex
Configuration k

Subconfiguration
k1

h

Subconfiguration
k2

h

Lemma
Every complex conf. k ∈ K contains two maximal disjoint
subconfigurations k1, k2 s.t. π · k1 = π · k2.

Proof.
▶ Let C > log(T + 1) be the number of sizes (colors) in k .
▶ Number of maximal subconfigurations = 2C > T + 1.
▶ Total size of each configuration is in {0,1,2, . . . ,T}.
▶ Pigeonhole principle⇒ there are two maximal

subconfigurations of same total size.

Solving the ILP, third Approach:

Lemma (Sparsification Lemma (informal))
If a complex configuration is taken twice in a solution, then we
can replace it by two other “less complex” configurations.

k2

k1

k2

k1

k1

k1

k2

k2

Solving the ILP, third Approach:

Theorem (Thin solutions)
If the ILP is feasible, then there is a solution x∗ such that:
▶ At most Õ(1

ε) machines get complex configurations.
▶ Each complex configuration is used at most once.
▶ |support(x∗)| ≤ O(|Π| log(|Π|T)) = Õ(1

ε).

simple
confs

complex
confs

Lemma
The number of simple configurations in K is 2O(log2(1

ε
)) = 2Õ(1).

Proof.
Let D = log(T + 1) and T = 1/ε2.

simple conf ≤
D∑

i=0

(
|Π|
i

)
× (T + 1)i

≤ (D + 1)|Π|D × (T + 1)D

≤ (
1
ε
log(

1
ε
))O(log(1

ε
))

≤ 2O(log2(1
ε
)) ≤ 2Õ(1).

Solving the ILP, third Approach:
Algorithm

Part 1: Complex Configurations.
1. Guess jobs assigned to complex configurations and

number of complex machines.
2. Solve that subinstance optimally with a dynamic program.

Solving the ILP: Third Approach
Algorithm

Part 2: Remaining Instance.
1. Guess the (simple!) configurations in support:

possibilities ≤
(

2Õ(1)

Õ(1
ε)

)
= 2Õ(1

ε
)

2. For each possibility solve the ILP restricted to those
variables with Kannan’s algorithm.

Total running time: 2Õ(1
ε
) log(n)

Main Result:
Algorithm

Theorem [Jansen, Klein, Verschae ’16]
The minimum makespan problem on identical machines admits
an EPTAS with running time

2O(1
ε
log4(1

ε
)) + O(n log n) = 2Õ(1

ε
) + O(n log n).

New Techniques via ILPs

max ctx
Ax = b

x ∈ Zn
≥0

where A ∈ ZM×N , b ∈ ZM , c ∈ ZN .

Considered case
M (#constraints) is a constant, entries of A are small (≤ ∆).

Pseudo-Polynomial Algorithms for ILPs

Known Algorithms
There is an algorithm for ILPs with running time:
▶ (M(∆ + ∥b∥∞))O(M2) [Papadimitrou ’81]
▶ N ·O(M∆)2M · ∥b∥2∞. [Eisenbrand & Weismantel ’18]

Theorem [Jansen & Rohwedder ITCS 19]
ILPs can be solved in time
O(M∆)2M · (1 + log(∥b∥∞))/ log(∆) + O(NM). Moreover,
improving the exponent to 2M − δ is equivalent to finding a truly
subquadratic algorithm for (min, +)-convolution.

Feasibility Problem

Theorem [Jansen & Rohwedder, ITCS 19]
Algorithm for feasibility with running time:
O(M∆)M · log(∆) · log(∆ + ∥b∥∞) + O(NM). Improving
exponent to M − δ would contradict the Strong Exponential
Time Hypothesis (SETH).

Application P||Cmax

Configuration ILP for large jobs∑
k∈K xk = m∑
k∈K kixk = ni ∀πi ∈ Π

xk ∈ Z≥0 ∀k ∈ K

has M + 1 = O(1
ϵ log(

1
ϵ)) constraints and N = |K | = 2O(1

ϵ
) many

variables. The value ∆ = maxk ,i ki ≤ 1
ϵ and ∥b∥∞ ≤ n.

New result: Including preprocessing O(n + 1
ϵ log(

1
ϵ)), we get:

2O(1
ϵ
log2(1

ϵ
)) + O(n).

Main Underlying Idea

Theorem [Steinitz]
Let ∥·∥ be a norm in RM and v (1), . . . , v (t) ∈ RM with ∥v (i)∥ ≤ 1
∀i and v (1) + · · ·+ v (t) = 0. Then there is a permutation π ∈ St
with ∥

∑j
i=1 v (π(i))∥ ≤ M for all j = 1, . . . , t .

Corollary
Let v (1), . . . , v (t) denote columns of matrix A with

∑t
i=1 v (i) = b

and entries bounded by ∆. Then there exists a permutation
π ∈ St such that for all j ∈ {1, . . . , t}∥∥∥∥∥∥

j∑
i=1

v (π(i)) − j · b/t

∥∥∥∥∥∥
∞

≤ 2M∆.

Our First Approach

b

0

1
2b

b′ = v (1) + . . .+ v (t/2)

Let v (1) + . . .+ v (t) = b be
columns corresponding to an
optimal solution of (IP).

Equivalent:
v (1) + . . .+ v (t/2) is optimal for

{max ctx ,Ax = b′, x ∈ ZN
≥0}

and v (t/2+1) + . . .+ v (t) is for

{max ctx ,Ax = b−b′, x ∈ ZN
≥0}.

If ordered via Steinitz Lemma, b′ and b−b′ are not far from 1
2b.

Dynamic Program
Solve for every i = 0,1, . . . , ℓ = O(M log(M∆) + log(∥b∥∞)) and
every b′ ∈ ZM with∥∥∥∥b′ − 1

2ℓ−i b
∥∥∥∥
∞
≤ 4M∆

the problem

max ctx
Ax = b′

∥x∥1 = 2i

x ∈ ZN
≥0.

Original problem for i = ℓ and b′ = b.

b

0

Second Approach via Discrepancy

Definition
For a matrix A ∈ ZM×N the discrepancy is

disc(A) = min
z∈{0,1}N

∥∥∥∥A(z − (
1
2
, . . . ,

1
2
)T)

∥∥∥∥
∞
.

The hereditary discrepancy of a matrix A ∈ ZM×N is

herdisc(A) = max
I⊆{1,...,N}

disc(AI)

where AI denotes A restricted to the columns in I.

Results for Discrepancy

Theorem [Spencer ’85]
For every matrix A ∈ RM×N with biggest absolute value of an
entry bounded by ∆

herdisc(A) ≤ 6
√

M∆.

Theorem [Beck, Fiala ’81]
For every matrix A ∈ RM×N , where the ∥.∥1 norm of any column
of A is at most t it holds

herdisc(A) < t .

Discrepancy instead of Steinitz

Main Idea: Split the ∥.∥1 norm of a solution.

Lemma
Let x ∈ ZN

≥0. Then there is a vector z ∈ ZN
≥0 with zi ≤ xi for all

i = 1, . . . ,N and ∥∥∥A(z − x
2
)
∥∥∥
∞
≤ herdisc(A).

Furthermore, if ∥x∥1> 1 then there is a vector z ′ as above with
1/6∥x∥1 ≤ ∥z ′∥1 ≤ 5/6∥x∥1∥∥∥A(z ′ − x

2
)
∥∥∥
∞
≤ 2 · herdisc(A).

Modified Dynamic Program
Let x∗ be an optimum solution with ∥x∗∥1 ≤ K and let H be an
upper bound for herdisc(A).
Solve for every i = 0, . . . , ℓ = ⌈log6/5(K)⌉ and every b′ ∈ ZM

with ∥∥∥∥b′ − 1
2ℓ−i b

∥∥∥∥
∞
≤ 4H

the problem

max ctx
Ax = b′

∥x∥1 ≤ (6/5)i

x ∈ ZN
≥0.

Original problem for i = ℓ and b′ = b.

b

0

Improved Results

Let H be an upper bound for herdisc(A).

Theorem [Jansen & Rohwedder, MOR 22]
ILPs can be solved in time O(H)2M ·M · log(M∆)/ log(∆) + LP.

Theorem [Jansen & Rohwedder, MOR 22]
The feasibility problem for ILPs can be solved in time:
O(H)M · log(∆) ·M · log(M∆) + LP.

Improved Algorithm for P||Cmax

Using a specific rounding for large jobs and replacing
configurations k with ∥k∥1 > 2 log(1/ϵ) we obtain a modified
Configuration ILP with matrix A′ for P||Cmax with

herdisc(A′) ≤ O(log(1/ϵ)).

This implies

Theorem [Berndt, Deppert, J., Rohwedder ALENEX 22]
The minimum makespan problem on identical machines admits
an EPTAS with running time

2O(1
ϵ
log(1

ϵ
) log log(1

ϵ
)) + O(n).

Rounding scheme
1. let T be a makespan guess

2. discard small jobs with pj ≤ εT and huge jobs with pj ≥ (1 − 2ε)T

3. we know pj ∈ (εT , (1 − 2ε)T)

4. split this into log(1/ε) growing intervals Ii = [2iεT , 2i+1εT)
for ε = 1/6,T = 1 we get the growing intervals
I0 = [1/6, 1/3), I1 = [1/3, 2/3)

5. split these intervals into 1/ε many equally sized intervals
the growing intervals [1/6, 1/3) and [1/3, 2/3) are split into smaller
intervals with the following boundaries:

1
6 ,

1
6 + 1

36 ,
1
6 + 2

36 ,
1
6 + 3

36 ,
1
6 + 4

36 ,
1
6 + 5

36 ,

1
3 ,

1
3 + 1

18 ,
1
3 + 2

18 ,
1
3 + 3

18 ,
1
3 + 4

18 ,
1
3 + 5

18 .

6. round remaining job processing times to the next lower boundary

7. two boundaries (of equal parity) of a growing interval sum up to a
boundary in the next growing interval, e.g.
(1/6 + 1/36) + (1/6 + 3/36) = 1/3 + 2/18

Simplification of the Configuration ILP

∑
k∈K

xk = m

∑
k∈K

xk · ki,j = ni,j ∀(i, j)

xk ∈ Z≥0 ∀k ∈ K

For each feasible configuration k with ∥k∥1 > 2 · log(1/ε):
⇒ There is a growing interval i and two indices j, j ′ of the same parity

with ki,j ≥ 1 and ki,j′ ≥ 1 if j ̸= j ′ and ki,j ≥ 2 otherwise. Decrement each ki,j

and ki,j′ by one while incrementing k
i+1, j+j′

2
by one without breaking the

feasibility of k or even altering its total load. This decreases ∥k∥1.

Convolution via FFT
▶ Think about the dynamic table entries as coefficients of multivariate

polynomials
▶ Given the i-th dynamic table, we can compute the (i + 1)-th dynamic

table by computing the polynomial product of the i-th table with itself
i + 1

i

▶ Can be done efficiently using the Fast Fourier Transformation (FFT)

Compute O(log(n)) many FFTs on input of size
(log(1/ε))O(1/ε log(1/ε)) which yields total running time

2O(1/ε log(1/ε) log log(1/ε)) log(n) + O(n).

Implementation

▶ The code is available on:
github.com/made4this/BDJR

▶ Implemented in C++ for ε ≈ 17.29%
▶ Parallelization with OpenMP in version 5.0
▶ FFT computations with FFTW3 in version 3.3.8
▶ 9000 experimental instances first used by Kedia in 1971
▶ Experiments computed in the HPC Linux Cluster of Kiel

University using 16 cpu cores and 100GB of memory per
instance.

https://github.com/made4this/BDJR

Conclusion

Recent Work
▶ Improvements of our implementation for P||Cmax .
▶ Improved EPTAS for Q||Cmax with support bound for

integral variables in MILP formulation.
▶ Parameterized algorithm for Q||Cmax with d item sizes and

maximum processing time pmax .

Conclusion

Open Questions
▶ Improved EPTAS for P||Cmax with running time

2O(1/ϵ) + O(n).
▶ Improve lower bound of EPTASs for P||Cmax .

