
LLNL-PRES-869146
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Collaborative Continuous Benchmarking for HPC
Keynote for PPAM’24

Olga Pearce
Lawrence Livermore National Laboratory

September 10, 2024

2
LLNL-PRES-869146 https://github.com/llnl/benchpark

§ Procurements
—Communicate datacenter workload to vendors
—Co-design systems, monitor progress
—System acceptance (contractual specification)

§ Validation of software stack, tools
—Compilers
—Debuggers
—Correctness tools
—Performance tools

§ Research
—Programming models
—Computational methods
—Performance across architectures

We benchmark HPC systems for a variety of reasons

Many stakeholders, communication is key for collaboration

3
LLNL-PRES-869146 https://github.com/llnl/benchpark

§ What are we trying to
characterize?

§ Are we capturing the best the
system can do?

§ Is something else impacting
performance?

§ Did we build and run the
code in the optimal and
reproducible way?

Source: https://www.top500.org/statistics/perfdevel/

Benchmarking is challenging

https://www.top500.org/statistics/perfdevel/

4
LLNL-PRES-869146 https://github.com/llnl/benchpark

HPC benchmarks run on diverse HPC systems

Lawrence Livermore Nat’l Lab
IBM Power9 + NVIDIA

§ Benchmark source code
—Abstraction (OpenMP, RAJA, Kokkos)
—Hardware-specific (CUDA, ROCm)

§ Optimized code for the CPU and GPU
—Must make effective use of the hardware
—Can make 10-100x performance difference

§ Rely heavily on system packages
—Need to use optimized communication and

MPI libraries that come with machines

Lawrence Berkeley Nat’l Lab
AMD Zen + NVIDIA

Lawrence Livermore Nat’l Lab
AMD Zen + Radeon

Oak Ridge National Lab
AMD Zen + Radeon

RIKEN Fujitsu ARM a64fx

Argonne National Lab
Intel Xeon + Xe

5
LLNL-PRES-869146 https://github.com/llnl/benchpark

Writing benchmark source code is only the beginning

State of the practice:
HPC system benchmarking is manual!

§ Building on each system is different, porting the
builds to new systems is manual

§ Running on each system is different, porting
run scripts to new systems is manual

§ Systems keep changing, requiring updates to
how we build and run benchmarks

§ Triggering builds and runs is manual:
benchmark results don’t stay up to date

§ Performance analysis of results is manual

Communicate technical specification via code, documentation, white papers

6
LLNL-PRES-869146 https://github.com/llnl/benchpark

HPC Benchmarks
are HPC Software

All components must work for your system, focus on explainable performance

• Bash?
• Schedulers
• Reframe,

Ramble

• Scale
• Analyze
• Reproduce

• Containers?
• EasyBuild,

Spack

• C/C++, MPI
• OpenMP
• RAJA/Kokkos

Source Build

RunExperi-
ment

§ Portability

§ Maintenance

§ Testing/CI

§ Verification

§ Reproducibility

7
LLNL-PRES-869146 https://github.com/llnl/benchpark

Benchpark enables complete
specification of HPC benchmarks
Infrastructure-as-code benchmark
specification codifies:
§ Benchmark build and run instructions
§ HPC Systems
§ HPC Experiments

Leverage advances in HPC automation
§Source code
§Build specification
§Run specification
§CI

Ramble

Every part of the specification codified: use to communicate, automate

github.com/llnl/benchpark

8
LLNL-PRES-869146 https://github.com/llnl/benchpark

Benchpark enables reproducible specifications of benchmarks

Full specification enables reproducibility, replicability, and automation

Specify
• How to build

and run
benchmarks
on a system

Run
• Run an

experiment
on a
system

Reproduce

• Re-run an
experiment
on a
system

Replicate

• Run an
experiment
on a new
system

Maintain

• CI: Run
experiment
on HPC
systems

Record
• Perf.measu-

rements +
full spec of
experiment

9
LLNL-PRES-869146 https://github.com/llnl/benchpark

HPC System definition for Performance

Goal: Use the system correctly

§ Best compiler

§ Best MPI

§ Best math libraries

§ On-node parallelism
(CUDA, ROCM, OpenMP)

§ Resources (cores, GPUs)

§ Scheduler (Slurm, flux)

§ Process mapping (cores, sockets, GPUs)

10
LLNL-PRES-869146 https://github.com/llnl/benchpark

HPC System in Benchpark: Specify Once
class Tioga(System):
 variant(
 "rocm",
 default="551",
 values=("543", "551"),
 description="ROCm version",
)

 variant(
 "compiler",
 default="cce",
 values=("gcc", "cce"),
 description="Which compiler to use",
)

 def initialize(self):
 super().initialize()
 self.scheduler = "flux"
 self.sys_cores_per_node = "64"
 self.sys_gpus_per_node = "4"

11
LLNL-PRES-869146 https://github.com/llnl/benchpark

12
LLNL-PRES-869146 https://github.com/llnl/benchpark

2024/9/1 Systems in Benchpark

§ 4 in Europe

§ 5 in US labs

§ 1 in Japan

§ 1 at a university

§ 2 Cloud systems

13
LLNL-PRES-869146 https://github.com/llnl/benchpark

HPC Experiment definition for Performance

§ On-node parallelism
(CUDA, ROCM, OpenMP)

§ Problem sizes
—Overall problem size, or
—Per node or per GPU

§ Scaling studies
—How to scale
—How to decompose

§ Resources (cores, GPUs)

Goal: Specify reproducible sets of experiments that map onto specific Systems

14
LLNL-PRES-869146 https://github.com/llnl/benchpark

HPC Experiment in Benchpark: Specify Once
class Saxpy(Experiment):
 variant(
 "programming_model",
 default="openmp",
 values=("openmp", "cuda", "rocm"),
 description="on-node parallelism model",
)

 def compute_applications_section(self):
 variables = {}
 matrix = {}
 n = ["512", "1024"]
 matrix = ["n"]
 if self.spec.satisfies("programming_model=openmp"):
 matrix += ["omp_num_threads"]
 variables["n_nodes"] = ["1", "2"]
 variables["n_ranks"] = "8"
 variables["omp_num_threads"] = ["2", "4"]
 else:
 n = ["128", "256"] + n
 variables["n_gpus"] = "1"

15
LLNL-PRES-869146 https://github.com/llnl/benchpark

16
LLNL-PRES-869146 https://github.com/llnl/benchpark

2024/9/1 Experiments in Benchpark

§ 3 microbenchmarks

§ HPL, HPCCm HPCG

§ 5 US

§ 1 Europe

§ 2 Japan

17
LLNL-PRES-869146 https://github.com/llnl/benchpark

Benchpark is 1 year old, 21 contributors, 11 orgs (60% non-LLNL)

18
LLNL-PRES-869146 https://github.com/llnl/benchpark

Benchpark codifies benchmarking steps

§ Benchpark does not replace benchmark
source, build system, or Spack package

§ Benchpark manages benchmark
experiments and how they map onto
systems with specified (or default)

§Compilers
§MPI/communication libraries
§Math libraries

§ Start running benchmark experiments
on your system with just a few
commands

git clone git@github.com:LLNL/benchpark.git

./benchpark list systems

./benchpark list benchmarks

./benchpark setup benchmark/ProgrModel
system workspace_root

ramble -P -D . workspace setup

ramble -P -D . on

19
LLNL-PRES-869146 https://github.com/llnl/benchpark

Who can use Benchpark

People who want to use or distribute benchmarks for HPC!

1.End Users of HPC Benchmarks
— Install, run, analyze performance of HPC benchmarks

2.Benchmark Developers
— People who want to share their benchmarks

3.Procurement teams at HPC Centers
— Curate workload representation, evaluate and monitor system progress

4.HPC Vendors
— Understand the curated workload of HPC centers, propose systems

20
LLNL-PRES-869146 https://github.com/llnl/benchpark

Catalogued library of working benchmarks

Building a community to contribute/benefit

Research

Curate

Colla-
borate

§ Enables exploration of large configuration space
—Architectural

—Software stack
—Temporal

§ What architecture and system configuration
is best for my benchmark?

§ On my system, is OpenMPI good enough?

§ What purpose will Benchpark help you
address?

21
LLNL-PRES-869146 https://github.com/llnl/benchpark

Infrastructure-as-code benchmark
specification enables reproducibility,
replicability, and automation

§HPC Systems
§HPC Experiments

Benchpark: Open collaborative repository for
reproducible specifications of HPC benchmarks

§ Tagging, keywords for publications
§ Performance metrics, metrics of usefulness
§ Dashboards: Archive specs+results

§ CI pipelines on PRs from GitHub at data
centers across the world and in the cloud

*Olga Pearce et al, Continuous Benchmarking, HPCTests SC|23

Full specification enables reproducibility, replicability, and automation

Specify
• How to build

and run
benchmarks
on a system

Run
• Run an

experiment
on a
system

Reproduce

• Re-run an
experiment
on a
system

Replicate

• Run an
experiment
on a new
system

Maintain

• CI: Run
experiment
on HPC
systems

Record
• Perf.measu-

rements +
full spec of
experiment

22
LLNL-PRES-869146 https://github.com/llnl/benchpark

Future directions:
§ Suite curation: Reproducible specification of an entire suite
§ Tagging: Keywords for publications, finding benchmarks
§ Metrics: Performance, usefulness
§ Dashboards: Archive+share specs+results, Slices in configuration space
§ CI pipelines at data centers across the world and in the cloud

Community Engagement:
§ Co-design / vendors on board, but incentive for app teams? (carrot or stick?)
§ Who owns which parts of the specification and approves changes?
§ Who finances R&D and maintenance?
§ ROI for the people working on it? → think about post docs, researchers, etc.

Benchpark roadmap and community engagement

Collaboration, reproducibility, fully specified public results

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

