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Graphcore Colossus Mk2 IPU
• Full-reticle N7, 14 metals, 59bn transistors

• 1472 processors (MIMD)

• 350Tflop/s fp16, 87Tflop/s fp32

• 897MiB distributed SRAM @ 65TB/s

• 11TB/s crossbar inter-tile interconnect

• 10x 16GB/s inter-chip links, 2x 16GB/s PCIe

Tile

Exchange

Link
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AI Algorithms - State of Play

• Dense neural networks are pervasive.

• Useful, efficient models of O(100m - 100bn) weights.

• Training compute ~ O(100 • weights2)  …  Eflop - Yflop

• Inference compute ~ O(100 • weights) … Gflops - Tflops

• All signs point to bigger models being more capable
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Intelligent Capabilities Emerge with Bigger Models

Chowdhery et al, “PaLM: Scaling Language Models with Pathways”, arXiv:2204.02311
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“The survival of man depends on the early construction 

of an ultra-intelligent machine.

… defined as a machine that can far surpass all the 

intellectual activities of any man however clever.”

Isadore Jacob Gudak / Irving John Good, 1962.



6PPAM Gdansk 2022

Parametric Scale of a Human

• Human brains have 100-1000 trillion trainable synaptic weights(1), 

probably highly redundant.

• Hippocampal synapses have a weight resolution of ~4.5 bits(2).

• Artificial neural nets can reuse learned weights across structure; 

brains cannot, so perhaps NNs need fewer weights.

• AI can specialize to “intellectual activities” more than a human.

=>  Ultra-intelligence might require less than 100TB of learned state?

(1) Wikipedia.org/wiki/Neuron

(2) Bartol et al, 2015, “Hippocampal spine head sizes are highly precise”, bioRxiv
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Dense Neural Network Training Energy

~3pJ/flop SoTA training transformers on “infrastructure class” AI machines:

• 1 billion parameters, 20 billion tokens* … 250 chips (100kW) for 1 hour.

• 1 trillion parameters, 20 trillion tokens* … 25,000 chips (10MW) for 1 year.

(*) Guided by Hoffman et al, “Training Compute-Optimal Large Language Models”, arXiv:2203.15556.
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US DoE ACE 2022 targets for an AI computer in 2030:

• ~1 Zflop/s … 140x Frontier HPL-AI

• ~60 fJ/flop … 1/50th Frontier HPL-AI
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6T SRAM 1-2-2

2T logic
normalized 

density

Transistor Density

“3nm”

500nm

2000x function density in 25 years
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Die density engineering continues, but slowly.

IMEC roadmap:

• GAA/forksheet expected at N2 … minimal density effect.

• Buried power rails (BPR) … in XPUs 2026?

• Vertical P/N stack (CFET) … in XPUs 2033?



11PPAM Gdansk 2022

Multi-die integration is replacing die density scaling

Intel Ponte Vecchio: 42-die on 2 interposers

Tesla D100 wafer-scale InFO

AMD MI250X: inter-CoWoS buried bridge

Apple M1-Ultra: buried silicon bridge, 

LPDDR5 on substrate

AMD Milan-X: Chip-on-Wafer caches
Graphcore: Wafer-on-Wafer decoupler
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Performance per Watt

~66%/year

<10%/year?

End of Dennard 
scaling at 90nm

~18%/year Constant 
voltage era

Ops per Joule
normalized
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Why do all the XPUs operate at 1-2GHz?

N7 lvt

N16 lvt

N28 svt

N40 svt

N65 hvt

N90 hvt

Vdd

Logic 
Speed 
(au)



14PPAM Gdansk 2022

Energy Cost of Speed by Modulating Voltage

XPU design consensus is ~1.85GHz @ ~800mV

• 20% faster would cost ~40% more energy

• 40% slower would save ~40% energy
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Taming Vdd

logic die
Csw<1uF

DTC die
~750uF

Heatsink side

Bump side

DRAM-type 
deep trench 
capacitors

Wafer-scale 
hybrid bond

Graphcore Colossus Mk2w:

• First Wafer-on-Wafer (WoW) 3D logic chip

• 1.4x speed at same energy/op

Vdd at die without/with DTC; 25MHz 50/50 min/max activity virus
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memory 
+

transport

float
datapath

nop
loop

Convolution dynamic power measured at the die with virus data

• Real application data is typically 1/3~1/2 less energetic.

• Power-optimized Mk2 die with wafer-on-wafer DTC decoupler.

Kernel Power

Multiply
Accumulate

pJ/flop
Datapath Memory

f16
f32 f16 1.0

f32 f32 1.3

f32 f32 f32 2.5
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float8

Noune et al. 2022, “8-bit Numerical Formats for Deep Neural Networks”, arXiv:2206.02915

1.4.3 “af8” : 4b exponent, 4b precision

For weights and activations; best accuracy 

1.5.2 “bf8” : 5b exponent, 3b precision

For gradients; best stability

weights
(activations similar)

gradA
(gradW similar)

IEEE Standards WG P3109

• ~50% of fp16 energy/flop

• Works for training with managed scaling

• More accurate for inference than int8
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1.4x from re-tuning graphics architecture to AI.

1.7x clock speed, 

but 2.8x power.

8x transistor density, 

from 28nm to 5nm.

16x from matrix multipliers and 

smaller floats, fp32 to fp8.

~300x peak GPU arithmetic in the first AI Decade
NVIDIA Maxwell 6.6Tflop32/s in 2014 to Hopper 2000Tflop8/s in 2023
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The Next Decade?

1.4x from re-tuning graphics architecture to AI.

1.7x clock speed, 

but 2.8x power.

8x transistor density, 

from 28nm to 5nm.

16x from matrix multipliers and 

smaller floats, fp32 to fp8.

Done?

Another 2-3x?

Another 2x, at 3x power?

More from AI-specific architectures
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sparse 
features

dense 
features

eg. probability 
of a click

sparse
eg. words

sparse
eg. words

dense
tokens

dense
tokens

Language Model

DL Recommender

Not All AI is Flop-Dominated

Gradient backprop requires continuous functions.  

Embeddings map sparse categorical data to a 

dense vector representation.  Embeddings are

learnable, with arithmetic intensity = 1.

One machine architecture may not be best at 

both dense NNs and sparse embeddings.

embed de-
embedNN

sync

NN

embed

NNmix
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Algorithm Imperative: Use Fewer Flops, More Information

• Routing aka Conditional Sparsity … like a brain

• Retrieval Augmentation … like a human + www
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Routing Networks

• In a dense neural network, every datum interacts with every weight.

• Brains don’t fire all their neurons in response to every stimulus.

• Efficient multi-task, multi-domain, multi-modal AI must obviously access 

its “knowledge” selectively.
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Retrieval Augmentation

Encoder1 allows retrieval 
of material across modes,  
languages, domains.

eg. Izacard et al. “Few-shot Learning with Retrieval Augmented 

Language Models”, arXiv2208.03299

Here retrieval is by approximate matching of digests to index a set of passages as the knowledge base.

Enrich this support system by encoding a Knowledge Graph to allow path-based retrieval. 

enc2

agg

enc2

enc2

decenc1 topK passages

enc1

docs frag

“digest”

query

response

“context”

“retreived support”
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Model Scale Breakthroughs

Deep learning

Cost of data

Cost of compute

Cost of memory

Unsupervised learning

Routing networks

Retrieval augmentation

O(100M) params

O(100G) params

O(100T) params?

1000
x

1000
x
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AI accelerators will need more (cheap, fast) memory

SoTA per reticle-sized logic die:

GB GB/s pJ/B normalized
$cost/B

SRAM over 50% die 1 >> 50,000 << 1 1

6x HBM3-4800 on silicon substrate 96 3000 40 4

16x LPDDR5-6400 on organic substrate 512 800 50 1

12x DDR5-5600 on 128GB DIMMs 1536 500 300 1.25

…all +0.5pJ/B/mm on die (max 30pJ/B for half-perimeter)  
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SGD requires O(1 million) training iterations:

• each iteration reads and writes all model and optimizer state

• 1s per iteration => 2 weeks to train

• SSD would wear out, DRAM requires GB/s ~ GB

Memory you can’t update in ~1s isn’t very useful
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• 1 PB DRAM ~ 200TB model (100T params)

• 2 PB/s ~ 1s model iteration

• 2k Mk3 IPUs ~ 1 Eflop16/s real

• ~2.5MWatts, 68 datacentre racks, 100m2

Brain-Scale Computing

Good Computer [mid-size]
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• Silicon is approaching “constant energy per op”.

• Information capacity ultimately determines the 

potency of an AI, given sufficient training.

• AI computing will be limited by power and memory.

• “Human scale” AI is feasible.

• AI algorithm innovation needs to focus more on 

memory, less on flops.

Remember this:


