BigDIA, Oct 29-30, 2021

In Situ Data Analytics for Next Generation Molecular Dynamics Workflows

Michela Taufer

Jack Dongarra Professor in High Performance Computing The University of Tennessee

Acknowledgements

T. Estrada

H. Weinstein

E. Deelman

R. da Silva

T. Johnston

T. Do

M. Wyattc

E. Kots

H. Carrillo

A. Razavi

S. Caino-Lores I. Lumsden

		ι.	
	_	 v	1

1741057, 1740990, 1741040, 1841758

Trends in HPC: Computing-IO Gap and Ensembles of Jobs

Source: Lucy Nowell (DOE) Source: https://wci.llnl.gov/simulation/computer-codes/uncertainty-quantification

3

Trends in HPC: Computing-IO Gap and Ensembles of Jobs

Source:

More generated data to move slower to storage

Trends in HPC: Computing-IO Gap and Ensembles of Jobs

5

Source:

https://wci.llnl.gov/simulation/computer-codes/uncertainty-quantification

Sequential mode:

Sequential mode:

Sequential mode:

Sequential mode:

Pipeline mode:

Augmenting HPC with In Situ Analytics

- Decaf (ANL)
- DYAD (LLNL)

Major Computational Domains on NSF Systems

Biophysics Material Research Chemistry **Biochemistry and Molecular Structures** Astronomical Sciences **Condensed Matter Physics** Fluid and Particulate Systems Advanced Scientific Computing Systematic and Population Biology Physics Others

CPU Core Hours

Major Computational Domains on NSF Systems

CPU Core Hours

Multiscale Computational Software Ecosystem

14 Source: https://ajw-group.mit.edu/multiscale-modeling-clays

M Stan, Material Today, 12, 2009, 20-28

Multiscale Computational Software Ecosystem

15 Source: https://ajw-group.mit.edu/multiscale-modeling-clays

M Stan, Material Today, 12, 2009, 20-28

Classical Molecular Dynamics Simulations

MD algorithm: Given the amino acidic atoms, Run *np* steps: →Forces on single atoms → Atom acceleration → Atom velocity → New position — Every *n* steps (n << np), Output atom coordinates (frame)

Widening IO Gap \rightarrow more data are generated and moved to the slower storage

Classical Molecular Dynamics Simulations

Capturing Rare Events in Trajectories

Transformations: e.g., from β-sheets to α-helixes

Movements: e.g., rotation of α-helix

From Visualization-driven Analytics of MD Trajectories ...

From Visualization-driven Analytics of MD Trajectories ...

... To In Situ Analytics of MD Simulations

- We want to capture what is going on in each frame without:
 - Disrupting the simulation (e.g., stealing CPU and memory on the node)
 - Moving all the frames to a central file system and analyzing them once the simulation is over
 - Comparing each frame with past frames of the same job
 - Comparing each frame with frames of other jobs

Frames (or snapshots) of an MD trajectory with a stride of 5 steps:

Collective variables (time 55)

Collective Collective Collective Collective Collective Collective variables(55) variables(60) variables(65) variables(70) variables(75) variables(80)

Travis Johnston, Buyu Zhang, Adam Liwo, Silvia Crivelli, and Michela Taufer. "In-Situ Data Analysis and Indexing of Protein Trajectories," JCC 2017.

28

Collective Collective Collective Collective Collective Collective variables(55) variables(60) variables(65) variables(70) variables(75) variables(80)

Collective variables serve as proxy for structural and conformational changes

Travis Johnston, Buyu Zhang, Adam Liwo, Silvia Crivelli, and Michela Taufer. "In-Situ Data Analysis and Indexing of Protein Trajectories," JCC 2017.

29

The Machine Learning Myth

The Machine Learning Myth

(Missing) Data / Software Ecosystem

"Only a small fraction of real-world ML systems is composed of the ML code" D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips Hidden Technical Debt in Machine Learning Systems

Capturing Knowledge through Collective Variables

CV: Largest Eigenvalue of a Secondary Structures

Given the single, local frame of a MD job at time t

CV: Largest Eigenvalue of a Secondary Structures

Compute largest eigenvalue

CV: Largest Eigenvalue of a Secondary Structures

 Largest eigenvalues of the Cartesian distance matrix for the C^α atoms of a secondary structure at a given time t (frame_t)

 C^{α} atoms

CV: Largest Eigenvalue of a Secondary Structure

 Largest eigenvalues of the Cartesian distance matrix for the C^α atoms of a secondary structure at a given time t (frame_t)

C^{α} atoms

CV: Largest Eigenvalue of a Secondary Structure

 Largest eigenvalues of the Cartesian distance matrix for the C^α atoms of a secondary structure at a given time t (frame_t)

TBIG**ORANGE** BIG**IDEAS**

CV: Largest Eigenvalue of a Secondary Structure

Travis Johnston, Buyu Zhang, Adam Liwo, Silvia Crivelli, and Michela Taufer. "In-Situ Data Analysis and Indexing of Protein Trajectories," JCC 2017.

ΔΔ

Application: Minimizing Folding Time of FS-Peptide

Pronk et al., Molecular Simulation Workflows as Parallel Algorithms: The Execution Engine of Copernicus, a Distributed High-Performance Computing Platform, Journal of Chemical Theory and Computation, 2015

45

Application: Minimizing Folding Time of FS-Peptide

Pronk et al., Molecular Simulation Workflows as Parallel Algorithms: The Execution Engine of Copernicus, a Distributed High-Performance Computing Platform, Journal of Chemical Theory and Computation, 2015

BIG**ORANGE** BIG**IDEAS**

Application: Minimizing Folding Time of FS-Peptide

Num. of MD steps saved (%)

- 70.0% of trajectories terminate early
- Avg. term. time for all trajectories: 264 ns
- Avg. term. time for preempted trajectories: 207 ns
- Total steps saved: 135,054 (33.76% of ensemble)

CV: Larger Eigenvalues of Ternary Structures

Given the single, local frame of a MD job at time t

T. Johnston, B. Zhang, A. Liwo, S. Crivelli, and M. Taufer. In-Situ Data Analytics and Indexing of Protein Trajectories. *Journal of Computational Chemistry (JCC)*, 38(16):1419-1430, 2017.

CV: Larger Eigenvalues of Ternary Structures

Measure the distance between C^{α}_{j} and C^{β}_{i}

Build a **bipartite distance matrix** by comparing two substructures

T. Johnston, B. Zhang, A. Liwo, S. Crivelli, and M. Taufer. In-Situ Data Analytics and Indexing of Protein Trajectories. *Journal of Computational Chemistry (JCC)*, 38(16):1419-1430, 2017.

Application: Capturing Movement of α -helices

Capture movement of structures (α -helices) with respect to each other

T. Johnston, B. Zhang, A. Liwo, S. Crivelli, and M. Taufer. In-Situ Data Analytics and Indexing of Protein Trajectories. *Journal of Computational Chemistry (JCC)*, 38(16):1419-1430, 2017.

1330

Application: Capturing Movement of α-helices

First and second α -helices appear stable; third helix moves

CV: Effective Sample Size (ESS)

Effective Sample Size (ESS)

- Metric capturing structural changes over a sample of *n* observations in the trajectory (n << total num. steps)
- If observations are autocorrelated:
 - → no major changes in sequence of frames
 - ightarrow else rare event has occurred

CV: Graphic Encoding

3D Cartesian representation

Multi-fold representation

Surface representation

CV: Graphic Encoding

representation

representation

representation

encoding

T. Estrada, J. Benson, H. Carrillo-Cabada, A. Razavi, M. Cuendet, H. Weinstein, E. Deelman, and M. Taufer. 55 Graphic Encoding of Proteins for Efficient High-Throughput Analysis. ICPP 2018.

CV: Graphic Encoding Algorithm

Every channel encodes information associated with particular secondary structures and their spatial relationship

56 T. Estrada, J. Benson, H. Carrillo-Cabada, A. Razavi, M. Cuendet, H. Weinstein, E. Deelman, and M. Taufer. *Graphic Encoding of Proteins for Efficient High-Throughput Analysis*. *ICPP 2018*.

Application: Capturing Unraveling of Loop TM6

Protein: Opsin extracellular cytoplasm TM5

57

Opsins are proteins involved in the vision process, supporting the conversion of light into electrochemical signals

Use graphical representations as indicators of what areas of a protein are relevant for particular conformational changes

Application: Capturing Unraveling of Loop TM6

Application: Capturing Unraveling of Loop TM6

Frame 50

Frame 1500

Frame 1950

59

Example of **transfer learning**: we can take an existing neural network such as **GEM-net** that has been trained on some dataset and repurposing it **for the analysis of trajectories**

(Missing) Data / Software Ecosystem

"Only a small fraction of real-world ML systems is composed of the ML code" D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips Hidden Technical Debt in Machine Learning Systems

BIG ORANGE BIGIDEAS

Mission of the analytics4md Project

- Formulate **new in situ methods to trace molecular events** by locally reducing knowledge of highdimensional molecular organization into collective variables (CVs)
- Design new data representations and extend unsupervised machine learning techniques to build an explicit global organization of structural and temporal CVs
- Develop new in situ workflow management that integrates simulation and analytics into complex MD workflows
- Train a diverse community in the use of the **new MD workflows**

https://analytics4md.org/ NSF IIS: 1741057, 1740990, 1741040, 1841758

