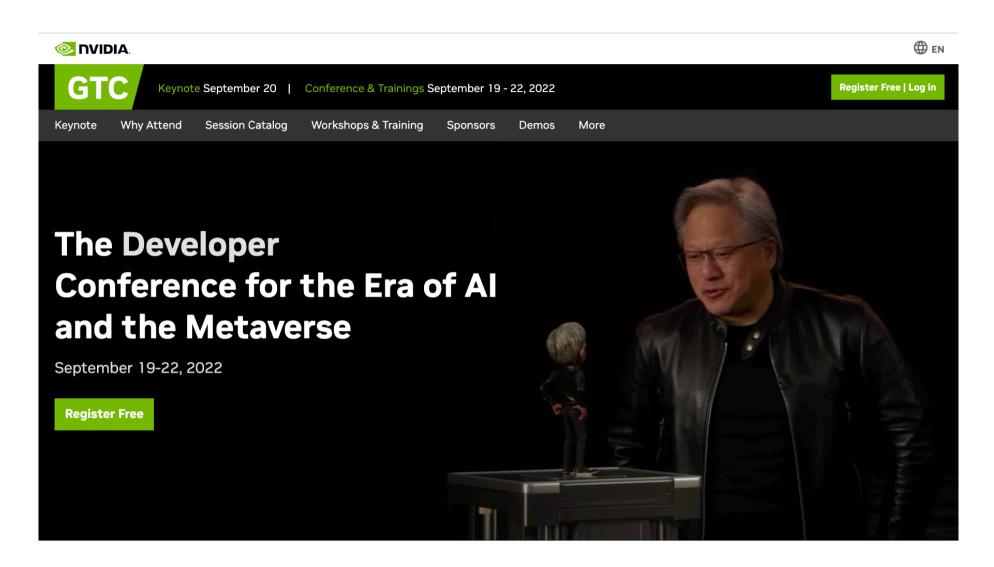
Nvidia Hopper Architecture

Manuel Ujaldón

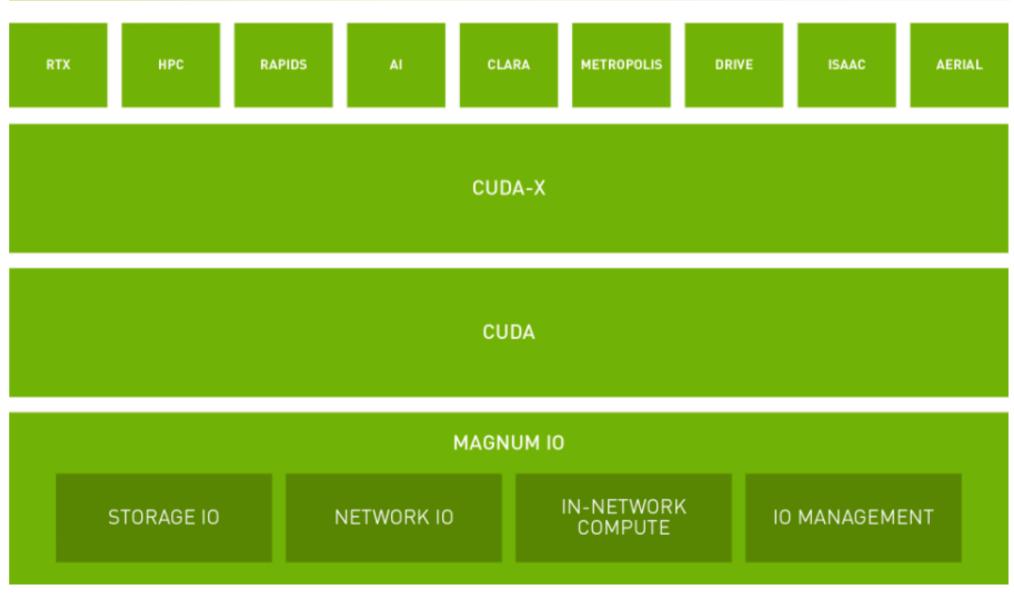
Full Professor in Computer Architecture @ University of Malaga DLI Ambassador @ Nvidia Corporation



Contents

I. Introduction. [6 slides]
II. Hardware design. [7]
III. Major features. [6]
IV. Performance, scalability, connectivity. [6]
V. Products, market segments, roadmap. [12]
VI. Nvidia AI Platform. [6]

I. Introduction



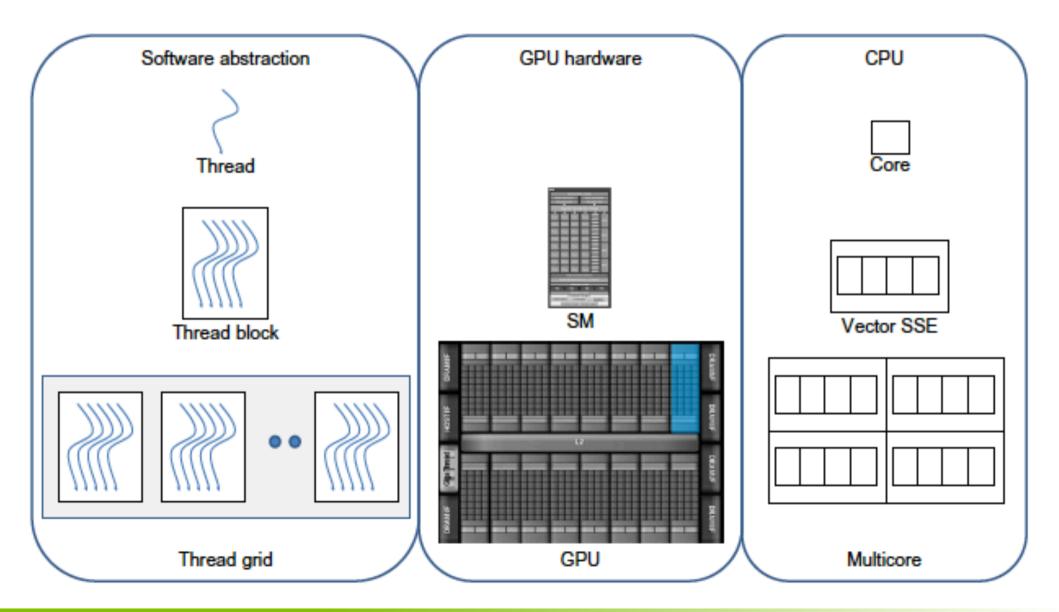
Explore the latest technologies and business breakthroughs.

Learn from experts how AI and the evolution of the 3D Internet are profoundly impacting industries—and society as a whole.

Join us for the online conference September 19-22, 2022 and be part of what comes next.

GPUs are everywhere

Manuel Ujaldón - Univ. of Málaga


The top layer consists of domain-specific libraries

- RTX: Ray-tracing.
- HPC: High Performance Computing.
- RAPIDS: Data analytics.
- Al: Artificial Intelligence.
- CLARA: Health care and life sciences.
- METROPOLIS: Video analytics and streaming signal AI platform.
- ORIVE: Autonomous vehicles.
- ISAAC: Robotics.
- AERIAL 5G: 5G virtual ramp processing.

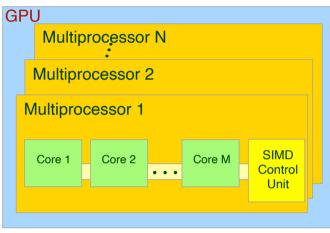
Overview of CUDA hardware generations

									Ampe	e
32							Turi RT c int8,	ng ores		
30								int4		
28	Volta Tensor cores									
26										
24										
		Pascal								
						lemory, N∖	/Link			
5 18					fp16					
16 I										
aldnon 14				Mar						
E 12				Unif	well ied memory					
				DX1						
Š			Kaa	lee						
			E Dvn	amic Parallel	lism					
6					-					
		Fem	ni							
ב כ כ										
	CUD									
	2008	2010	2012	2014	2016	2018	2019	2020	2021	2022

Comparing the GPU and the CPU: Two methods for building supercomputers

Manuel Ujaldón - DLI University Ambassador

The CUDA hardware: SIMD processors structured, a tale of hardware scalability


• A GPU consists of:

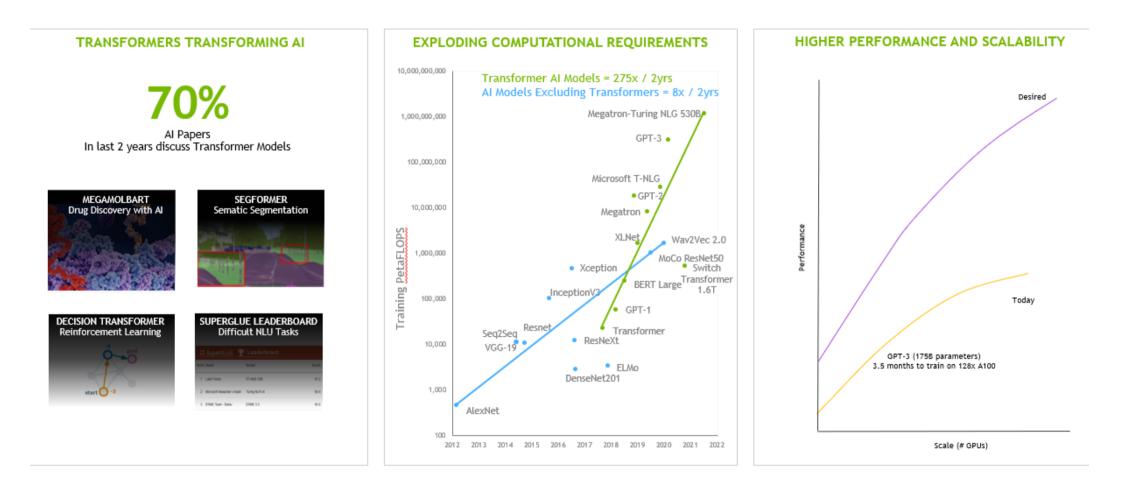
N multiprocessors (or SMs), each containing
 M cores (or stream processors).

Heterogeneous computing:

- GPU: Data intensive. Fine-grain parallelism.
- CPU: Control/management. Coarse grain parallelism.

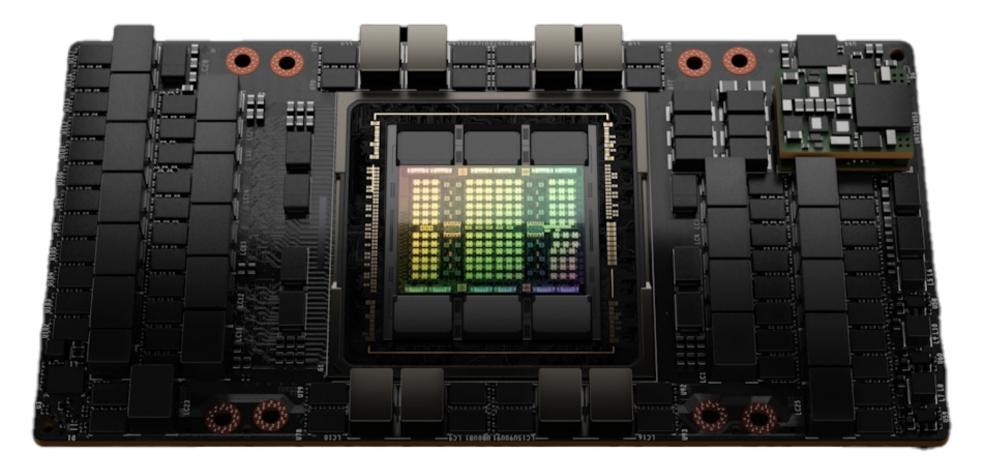
	G80 (Tesla)	GF100 (Fermi)	GK110 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)	GV100 (Volta)	TU102 (Turing)	A100 (Ampere)	H100 (Hopper)
Time frame	2006-09	2010-11	2012-13	2014-15	2016-17	2018-20	2019-20	2020-22	2022-?
N (multiprocessors)	16-30	14-16	13-15	4-24	56	80	72	108	132
M (fp32 cores/multip.)	8	32	192	128	64	64	64	64	128
# cores	128-240	448-512	2496-2880	512-3072	3584	5120	4608	6912	16896

The new generations (2016-2022)


		Pascal		Volta	Turing	Am	oere	Нор	per
Architecture	GP104 (GTX1080)	GP100 (Titan X) (Tesla P100)	GP102 (Tesla P40)	GV100 (Tesla V100)	TU102 (Titan RTX)	A100	GA100	H100	GH100
Time frame	2016	2017	2017	2018	2019	2020	2020	2022	2022
CUDA Compute Capability	6.0	6.0	6.1	7.0	7.5	8.0	8.x	9.0	9.x
N (multiprocs.)	40	56	60	80	72	108	128	114	132
M (cores/multip.)	64	64	64	64	64	64	64	128	128
Number of cores	2.560	3.584	3.840	5.120	4.608	6.912	8.192	14.592	16.896

II. Hardware design

Next wave of AI requires performance and scalability


MEGAMOLBART: <u>https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/megamolbart</u> SegFormer: <u>https://arxiv.org/abs/2105.15203</u> Decision Transformer: <u>https://arxiv.org/pdf/2106.01345.pdf</u> SuperGLUE: https://super.gluebenchmark.com/leaderboard

Exploding Computational Requirements, source: NVIDIA Analysis and https://github.com/amirgholami/ai_and_memory_wall

Manuel Ujaldón - DLI University Ambassador

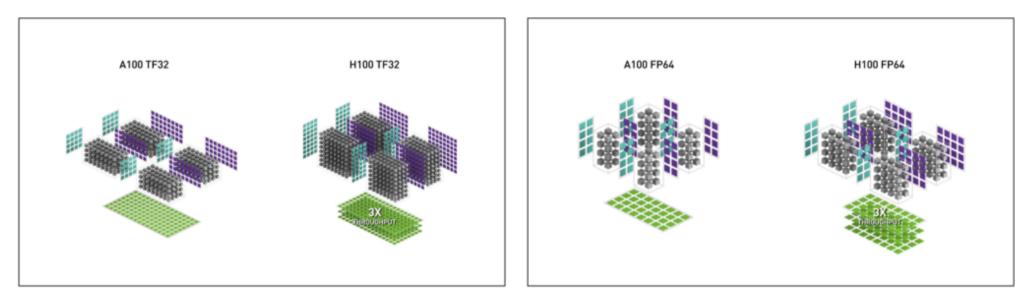
The printed circuit board for Hopper

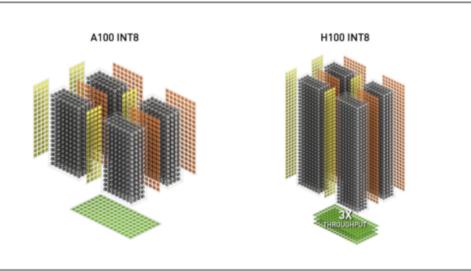
The GH100 GPU with 144 SMs and 6 HBM3 stacks

GH100 streaming multiprocessor

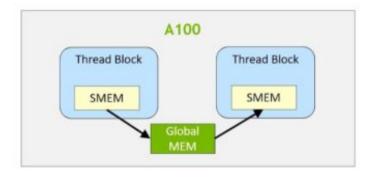
			L1 Instruct	tion Cache				
	L0 Ir	struction C	ache		.0 Instruction C	ache		
	Warp Sch	eduler (32 t	hread/clk)	Warp	Scheduler (32 t	thread/clk)		
	Dispatel	h Unit (32 th	read/clk)	Disp	atch Unit (32 th	read/clk)		
	Register	File (16,384	4 x 32-bit)	Regis	ter File (16,38	4 x 32-bit)		
INT32	FP32 FP32	FP64		INT32 FP32 FP32	FP64	1		
INT32	FP32 FP32	FP64		INT32 FP32 FP32	FP64]		
INT32		FP64		INT32 FP32 FP32	FP64			
INT32		FP64		INT32 FP32 FP32	FP64			
INT32	FP32 FP32	FP64		INT32 FP32 FP32	FP64			
INT32	FP32 FP32	FP64		INT32 FP32 FP32	FP64			
INT32		FP64	TENSOR CORE	INT32 FP32 FP32	FP64	TENSOR CORE		
INT32 INT32	FP32 FP32 FP32 FP32	FP64 FP64	TENSOR CORE	INT32 FP32 FP32 INT32 FP32 FP32	FP64 FP64	TENSOR CORE		
INT32 INT32	FP32 FP32 FP32 FP32	FP64 FP64	4 th GENERATION	INT32 FP32 FP32 INT32 FP32 FP32	FP64 FP64	4 th GENERATION		
INT32	FP32 FP32	FP64 FP64		INT32 FP32 FP32	FP64			
INT32	FP32 FP32	FP64 FP64		INT32 FP32 FP32	FP64 FP64	1		
INT32	FP32 FP32	FP64		INT32 FP32 FP32	FP64	1		
INT32	FP32 FP32	FP64		INT32 FP32 FP32	FP64	1		
INT32	FP32 FP32	FP64		INT32 FP32 FP32	FP64	1		
INT32	FP32 FP32	FP64		INT32 FP32 FP32	FP64			
LD/ ST	LD/ LD/ LD/ ST ST ST	LD/ LD/ ST ST	LD/ LD/ ST ST SFU		.D/ LD/ LD/ ST ST ST	LD/ LD/ ST ST SFU		
_								
		struction C			0 Instruction C			
		eduler (32 t		Warp Scheduler (32 thread/clk) Dispatch Unit (32 thread/clk)				
		h Unit (32 th File (16,384			ter File (16,38			
INT32		FP64	4 X 32-0it)	INT32 FP32 FP32		4 x 32-bit)		
INT32	FP32 FP32	FP64 FP64		INT32 FP32 FP32	FP64 FP64			
INT32	FP32 FP32	FP64		INT32 FP32 FP32	FP64			
INT32	FP32 FP32	FP64		INT32 FP32 FP32	FP64	1		
INT32	FP32 FP32	FP64		INT32 FP32 FP32	FP64	1		
INT32	FP32 FP32	FP64		INT32 FP32 FP32	FP64			
INT32	FP32 FP32	FP64		INT32 FP32 FP32	FP64			
INT32		FP64	TENSOR CORE	INT32 FP32 FP32	FP64	TENSOR CORE		
INT32		FP64	4 th GENERATION	INT32 FP32 FP32	FP64	4 th GENERATION		
	FP32 FP32	FP64		INT32 FP32 FP32	FP64			
INT32	FP32 FP32 FP32 FP32	FP64 FP64		INT32 FP32 FP32 INT32 FP32 FP32	FP64 FP64			
INT32		FP64 FP64						
INT32 INT32				INT32 FP32 FP32 INT32 FP32 FP32	FP64 FP64	4		
INT32 INT32 INT32	FP32 FP32				FP64 FP64	1		
INT32 INT32 INT32 INT32	FP32 FP32 FP32 FP32	FP64		INT32 FP32 FP32				
INT32 INT32 INT32	FP32 FP32 FP32 FP32			INT32 FP32 FP32 INT32 FP32 FP32	FP64			
INT32 INT32 INT32 INT32 INT32 INT32 LD/	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 LD/ LD/ LD/	FP64 FP64 FP64 LD/ LD/		INT32 FP32 FP32	FP64			
INT32 INT32 INT32 INT32 INT32 INT32	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	FP64 FP64 FP64	ST ST SFU	INT32 FP32 FP32 LD/ LD/ LD/ L ST ST ST ST	FP64 .D/ LD/ LD/ ST ST ST	LD/ LD/ ST ST SFU		
INT32 INT32 INT32 INT32 INT32 INT32 LD/	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 LD/ LD/ LD/	FP64 FP64 FP64 LD/ LD/ ST ST	Tensor Memo	INT32 FP32 FP32 LD/ LD/ LD/ LD/ ST ST ST ST ry Accelerator	FP64 LD/ LD/ ST ST ST			
INT32 INT32 INT32 INT32 INT32 INT32 LD/	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 LD/ LD/ LD/	FP64 FP64 FP64 LD/ LD/ ST ST	ST ST SFU	INT32 FP32 FP32 LD/ LD/ LD/ LD/ ST ST ST ST ry Accelerator	FP64 LD/ LD/ ST ST ST			

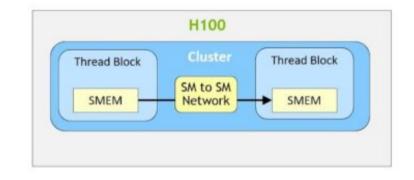
Computational and memory resources in last 3 flagship GPUs

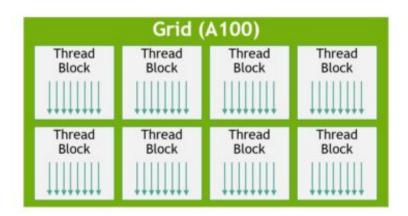

	Tesla V100 (Volta)	Titan RTX (Turing)	A100 (Ampere)	H100 * (Hopper)
GPU (chip)	GV100	TU102	GA100	GH100
fp32 cores	5120	4608	6912	16896
fp64 cores	2560	144	4096	8448
Frequency (base-boost)	1370-1455 MHz	1440-1770 MHz	1410 MHz	n/a
TFLOPS (fp16, fp32, fp64)	30, 15, 7.5	32.6, 16.3, 0.51	78, 19.5, 9.7	120, 60, 30
Memory interface	HBM2 4096 bits	GDDR6 384 bits	HBM2 5 stacks	HBM3 5 stacks
Memory bandwidth	900 GB/s.	672 GB/s.	1555 GB/s.	3000 GB/s.
Video memory	16 ó 32 GB	24 GB	48 GB	80 GB
L2 cache	6 MB	6 MB	40 MB	50 MB
Shared memory per multip.	Hasta 96 KB	Up to 64 KB	Up to 164 KB	Up to 228 KB.

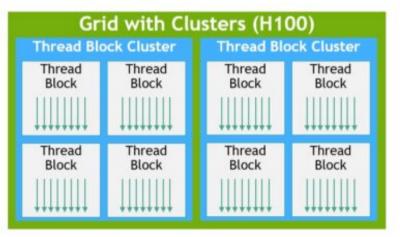

(*) Preliminary specifications for H100 based on current expectations and are subject to change in the shipping product.

Manuel Ujaldón - DLI University Ambassador

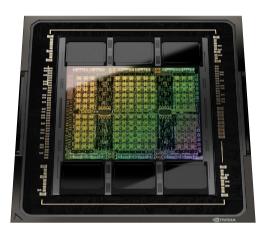


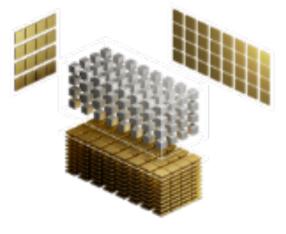

Matrix operations implemented in hardware





Thread block clusters: A new layer in the memory hierarchy

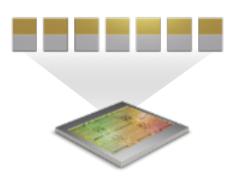


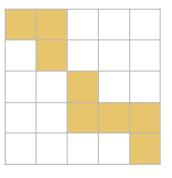


III. Major features

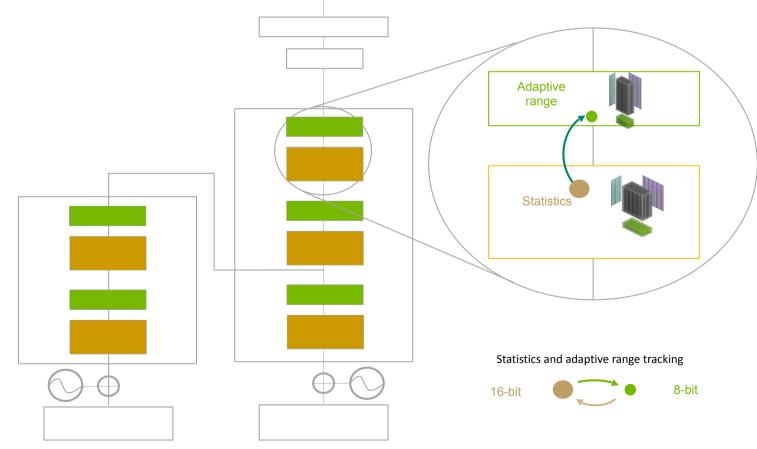
Hopper: The new engine for Al infrastructure.

Custom 4N TSMC process 80 billion transistors

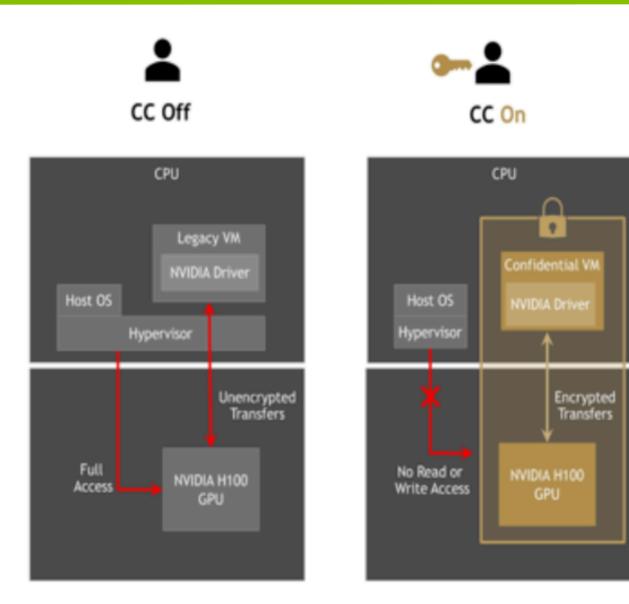

Transformer engine


4th generation NVLink

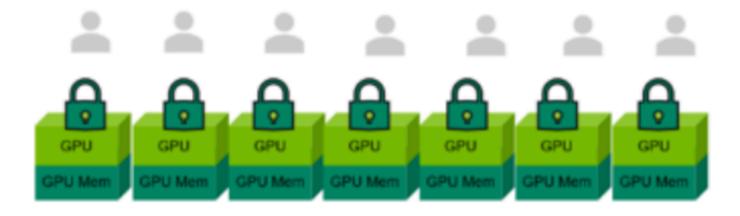
Confidential computing



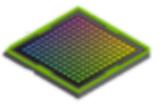
DPX instructions


Transformer engine: Tensor cores optimized for transformer models

Nvidia tuned adaptive range optimization across 16-bit and 8-bit match.
 Configurable macro blocks deliver performance without accuracy loss.
 6x faster training and inference of transformers models.



Confidential computing: Secure data and AI models in-use



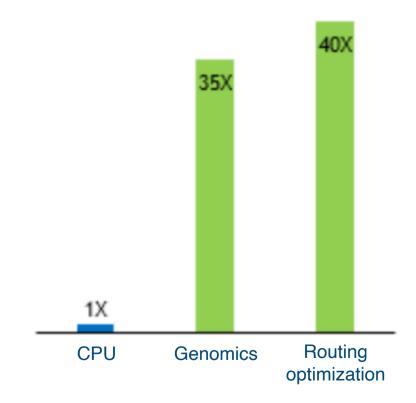
Multi-GPU instance: 7 secure tenants within a single GPU

7 fully isolated and secured instances, QoS guaranteed.

DPX: New instructions for accelerating dynamic programming algorithms

ğ

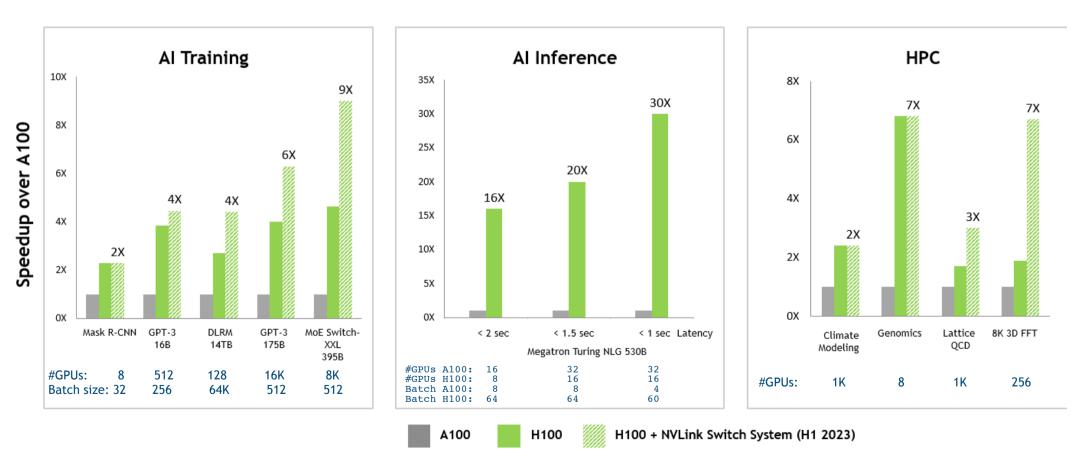
Optimization





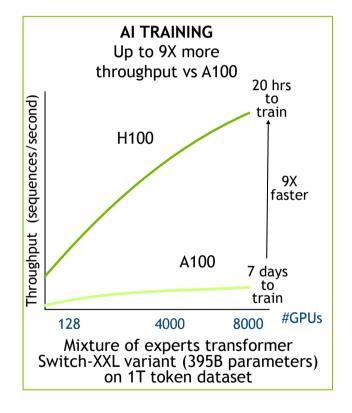
Graph analytics

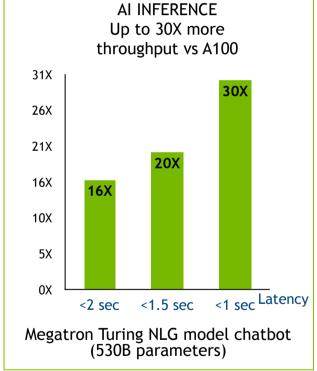
Real-time performance



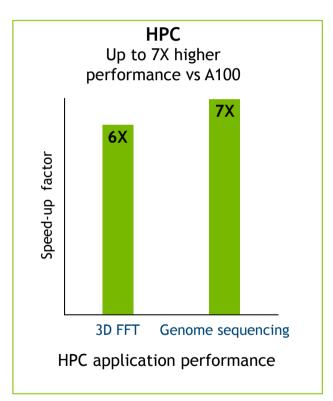
IV. Performance, scalability, connectivity

Substantial acceleration in all areas


H100 speed-up vs. A100 on multiple GPUs:



Projected performance subject to change


H100 brings order-of-magnitude leap in performance

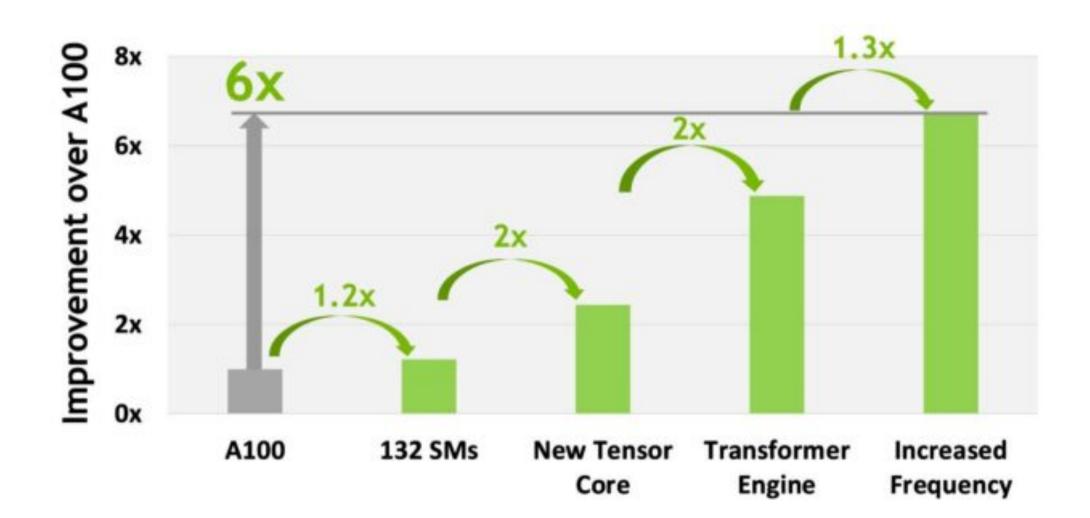
Performance and scalability for next-generation breakthroughs:

Input sequence length=128, output sequence length=20 A100 cluster: HDR IB network H100 cluster: NDR IB network for 16 H100 configuration 16 A100 vs 8 H100 for 2 sec 32 A100 vs 16 H100 for 1 and 1.5 sec

3D FFT (4K^3):

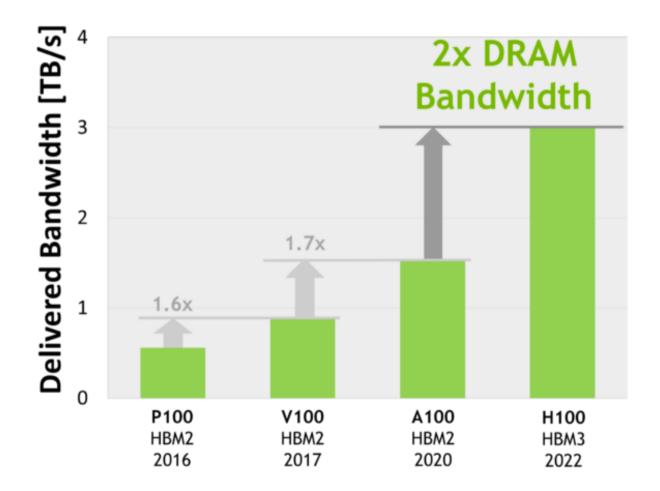
- A100 cluster: HDR IB network - H100 cluster: NVLink Switch System, NDR IB

Genome sequencing (Smith-Waterman):


- 1 A100

- 1 H100

Projected performance subject to change



Speed-up breakout vs. A100

NVIDIA.

Memory bandwidth improvement since the adoption of High Bandwidth Memory

Unprecedented AI and HPC performance, scalability and connectivity

Peak performance:

Data type	(NVLink		(includi	up vs. A100 ng sparsity) PCI-e
fp8	4 Peta-	3.2 Peta-	6x	5x
fp16 (half)	2 Peta-	1.6 Peta-	Зx	2.5x
fp32 (float)	1 Peta-	0.8 Peta-	Зx	2.5x
fp64 (double)	60 Tera-	48 Tera-	Зx	2.5x

	HBM3 memory (NVLink)	HBM2e mem. (PCI-e)
Size	80 Gbytes	80 Gbytes
Bandwidth	3 TB/s. (1.5x vs. A100)	2 TB/s.

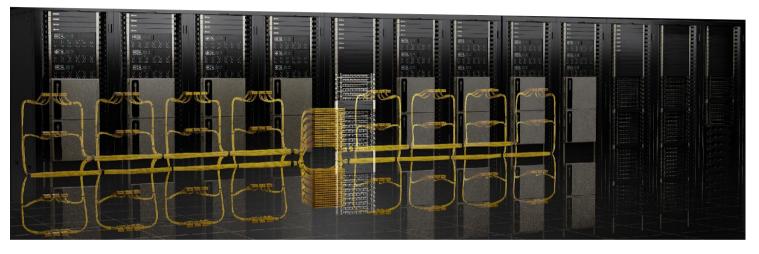
Scalability:

- NVLink Switch: Up to 256 GPUs (from NVSwitch@DGX).
- NVLink Bridge: Up to 2 GPUs (for PCI-e).

Connectivity:

- GPU to GPU:
 - 900 GB/s (4th gen. NVLink).
 - ○600 GB/s (5th gen. PCI-e).
- GPU to CPU:
 - ■128 GB/s (5th gen. PCI-e).
- Form factors:

• NVLink:


PCI-express:

NVLink switch system

■ High perf. 4th gener. NVLink network for up to 256 GPUs.

4th GEN NVLink

- 900 GB/s from 18 bi-directional ports @ 25 GB/s. each.
- GPU-2-GPU connectivity across nodes.

3rd GEN NVSwitch (from DGXs)


- All-to-all NVLink switching for 8-256 GPUs.
- Accelerate collectives multicast and SHARP.

NVLink Switch

• 128 port cross-connect based on NVSwitch.

Representative hardware: H100 cluster (1 scalable unit)

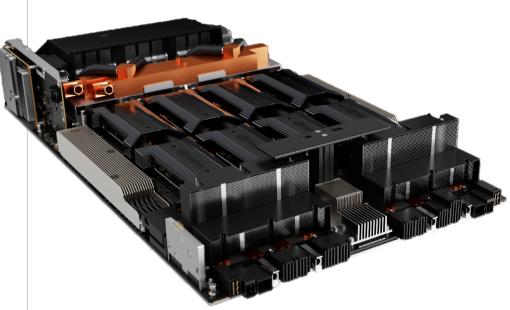
- Servers: 32.
- NVLink switches: 18.
- NVLink optical cables: 1152.
- All-to-all bandwidth: 57.6 TB/s.

V. Products, market segments, roadmap

HGX-H100

HIGHEST PERFORMANCE FOR AI AND HPC

4-way / 8-way H100 GPUs in-network SHARP compute with sparsity: 32 PetaFLOPS (FP8) 3.6 TFLOPS (FP16)


NVIDIA Certified HPC Offering from All Makers

FASTEST, SCALABLE INTERCONNECT

4th Gen NVLINK with 3X faster All-Reduce communications vs. previous generation.

3.6 TB/s bisection bandwidth NVLINK Switch System Option Scales Up to 256 GPUs

SECURE COMPUTING First HGX System with Confidential Computing

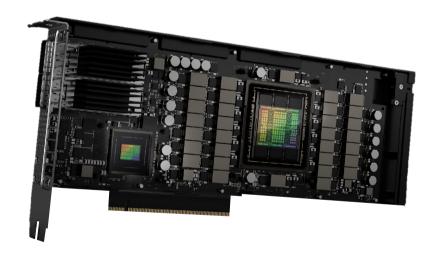
H100 PCI-express

HIGHEST AI AND HPC MAINSTREAM PERFORMANCE

3.2PF fp8 (5x) 1.6PF fp16 (2.5x) 800TF TF32 (2.5x) 48TF fp64 (2.5x) (x-factors vs. A100 and including sparsity) 2TB/s , 80GB HBM2e memory

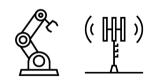
HIGHEST COMPUTE ENERGY EFFICIENCY

Configurable TDP - 150W to 350W 2 Slot FHFL mainstream form factor


HIGHEST PERFORMING SERVER CONNECTIVITY 128GB/s PCI Gen5 600 GB/s GPU-2-GPU connectivity (5X PCIe Gen5) up to 2 GPUs with NVLink Bridge

H100 CNX converged accelerator

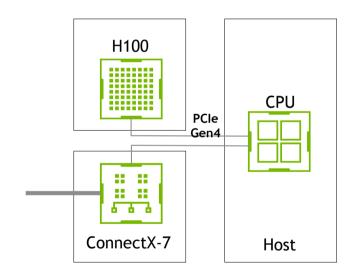
Delivering high-speed GPU-network I/O to mainstream servers


350W | 80GB | 400 Gb/s Ethernet or InfiniBand PCIe Gen 5 | 2-Slot FHFL | NVLink

MULTI-NODE TRAINING

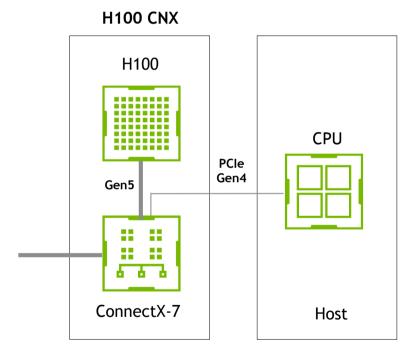
High performance and scalability

5G AI / PROCESSING



5G processing and AI services on a single commodity server

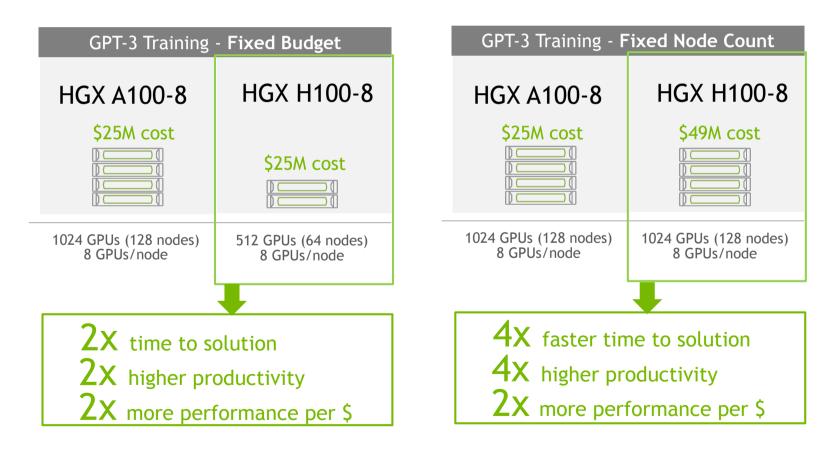
H100 CNX


The mainstream choice for Multi-GPU

PCIe Gen4 Mainstream Server

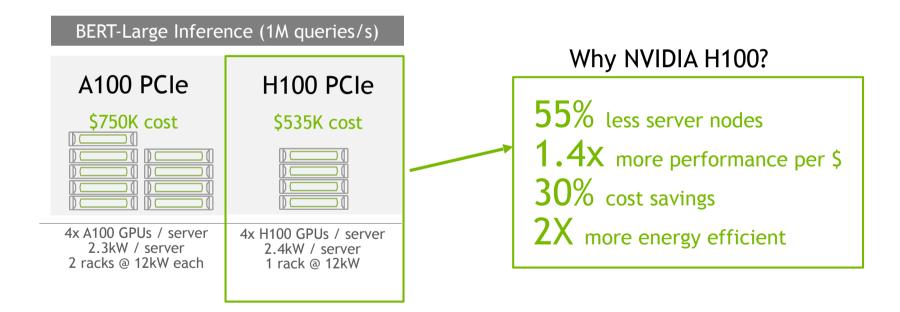
- Throughput limited by Gen4 and CPU processing bottlenecks
- Reduced CPU performance from managing data transfers

System configuration: 2U, 2S 64C CPU, 1024GB RAM, 2TB SSD, ConnectX-7 Dx NIC on H100 PCIe config


PCIe Gen4 Mainstream Server with H100 CNX

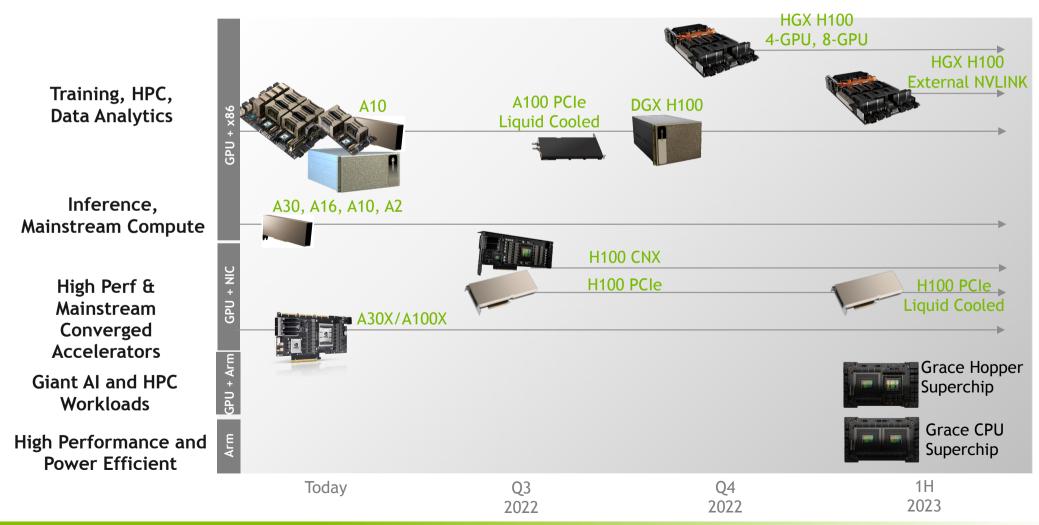
- Gen5 GPUDirect between network and H100 delivers 2X higher throughput
- CPU performance increases
- Scalable multi-node GPU processing

Highest performance training with H100


4x higher performance over A100

Server cost for representation purpose. Please contact your OEM/ODM for actual costs System configuration (Training): HGX A100 8-way | HGX H100 8-way <u>excludes</u> NVlink Switch System

Optimal compute for large inference deployments



Server cost for representation purpose. Please contact your OEM/ODM for actual costs System configuration: 2U, 2S 64C CPU, 1024GB RAM, 2TB SSD, ConnectX-7 Dx NIC. 3 Year Hosting Cost: \$150/kW/m

Portfolio availability

Hopper coming soon

Choose the right H100 GPU

		Training	, Inference, HPC, Data A	Analytics
GPU	Availability	Highest	Mainstrea	im Servers
		Performance	Multi-Node Jobs	Single-Node Jobs
H100 SXM	Q3 '22	DGX HGX 4-Way/8-Way		
H100 CNX	Q4 '22		HGX CNX	HGX CNX
H100 PCle	Q3 '22			HGX PCIE

Price-performance comparison relative within each column

Data center GPU comparison

- 1. Coming soon
- 2. Supported on <u>Azure NVIDIA A100</u> with reduced performance compared to
- 3. A100 without Confidential Computing or H100 with Confidential Computing.

 \odot

4. All Tensor Core numbers with sparsity

	H1	00	A	100	A30	A2	T4	A40	A10	A16
Design	Highest Big NLP,			gh Perf mpute	Mainstream Compute	Entry-Level Small Footprint	Small Footprint Datacenter Inference	High Perf Graphics	Mainstream Graphics & Video with Al	High Density Virtual Desktop
Form Factor	SXM5	x16 PCle Gen5 2 Slot FHFL 3 NVLINK Bridge	SXM4	x16 PCle Gen4 2 Slot FHFL 3 NVLink Bridge	x16 PCIe Gen4 2 Slot FHFL 1 NVLink Bridge	x8 PCIe Gen4 1 Slot LP	x16 PCIe Gen3 1 Slot LP	x16 PCle Gen4 2 Slot FHFL 1 NVLink Bridge	x16 PCIe Gen4 1 slot LP	x16 PCIe Gen4 2 Slot FHFL
Max Power	700W	350W	500W	300W	165W	40-60W	70W	300W	150W	250W
FP64 TC FP32 TFLOPS ³	60 60	48 48	19.5	5 19.5	10 10	NA 4.5	NA 8	NA 37	NA 31	NA 4x4.5
TF32 TC FP16 TC TFLOPS ³	1000 2000	800 1600	312	2 624	165 330	18 36	NA 65	150 300	125 250	4x18 4x36
FP8 TC INT8 TC TFLOPS/ TOPS ³	4000 4000	4000 4000	NA	1248	NA 661	NA 72	NA 130	NA 600	NA 500	NA 4x72
GPU Memory / Speed	80GB HBM3	80GB HBM2e	80GI	3 HBM2e	24GB HBM2	16GB GDDR6	16GB GDDR6	48GB GDDR6	24GB GDDR6	4x 16GB GDDR6
Multi-Instance GPU (MIG)	Up t	.o 7	U	p to 7	Up to 4	-	-		-	-
NVLink Connectivity	Up to 256	2	Up to 8	2	2	-	-	2	-	-
Media Acceleration	7 JPEG E 7 Video I			G Decoder o Decoder	1 JPEG Decoder 4 Video Decoder	1 Video Encoder 2 Video Decoder (+AV1 decode)	1 Video Encoder 2 Video Decoder	2 Video	Encoder Decoder decode)	4 Video Encoder 8 Video Decoder (+AV1 decode)
Ray Tracing				-		Yes	Yes	Yes	Yes	Yes
Transformer Engine	Ye	25		-		-	-	-	-	-
DPX Instructions	Ye	25		-		-	-		-	
Graphics	For in-situ v (no NVIDIA vW	vPC or RTX		or in-situ visua NVIDIA vPC or		Good	Good	Best	Better	Good
vGPU	Ye	S ¹		Yes		Yes	Yes	Yes	Yes	Yes
Hardware Root of Trust	Ye	25		Optiona	ι	Optional	-	Optional	Optional	Optional
Confidential Computing	Ye	25		(2)	-	-	-		-	-
el Server Availability	Q3'22	Q3'22	In Pro	duction	In Production	In Production	In Production	In Production	In Production	In Production

Choose the right data center GPU

	GPU	Availability	DL Training & DA	DL Inference	₩ НРС/АІ	ک Render Farms	Virtual Workstation	د Virtual Desktop (VDI)	AA A ainstream Acceleration	Far Edge Acceleration	Al-on-5G
	H100	Q3 '22	SXM PCIE CNX	SXM PCIE CNX	SXM PCIE CNX				PCIE CNX		CNX
Compute	A100	Now	SXM PCIE A100X	SXM PCIE	SXM PCIE A100X				PCIE A100X		X001A
	A30	Now		PCIE	PCIE				PCIE		A30X
pute	A40	Now									
Graphics / Compute	A10	Now		•		•					
Grap	A16	Now									
Factor Braphics	A2	Now									
Small Form Factor Compute/Graphics	T4	Now		•			•			•	
	Good Better	Compute SE	mance comparison wit F Compute & Graphics	hin each product grou) and workload colum	p (Compute, Graphics - n	<u>8.</u>	SXM SXM form fa		00 + ConnectX7 Conve A100 or A30 + Bl	erged PCIe card ueField2 Converged PC	Cle Card

Delivering the AI center of excellence for enterprise

Best of breed infrastructure for AI development built on DGX

NVIDIA DGX H100

The World's First AI System with NVIDIA H100

8x NVIDIA H100 | 32 PFLOPS FP8 (6X) | 0.5 PFLOPS FP64 (3X) 640 GB HBM3 | 3.6 TB/s (1.5X) BISECTION B/W

4th Generation of the World's Most Successful Platform Purpose-Built for Enterprise AI

COMING LATE 2022

DGX SuperPOD with DGX H100

32 DGX H100 | 1 EFLOPS AI NVLINK SWITCH SYSTEM | QUANTUM-2 IB | 20TB HBM3 | 70 TB/s BISECTION B/W (11X)

1 ExaFLOPS of AI Performance in 32 Nodes Scale as large as needed in 32 node increments

X-Factors compare performance over DGX SuperPOD with DGX A100 supercomputer configuration with same number of nodes

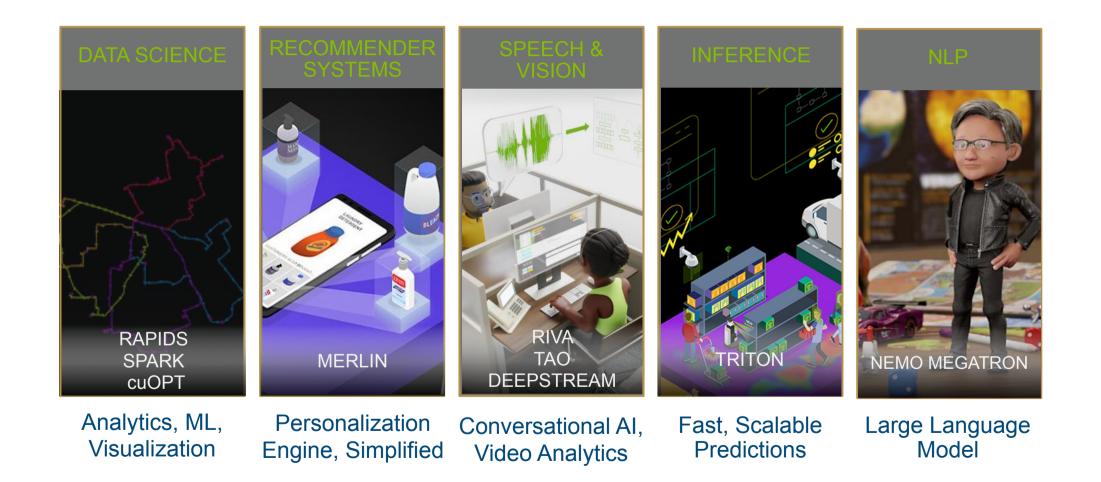
Announcing Nvidia EOS Supercomputer

The world's most advanced AI infrastructure

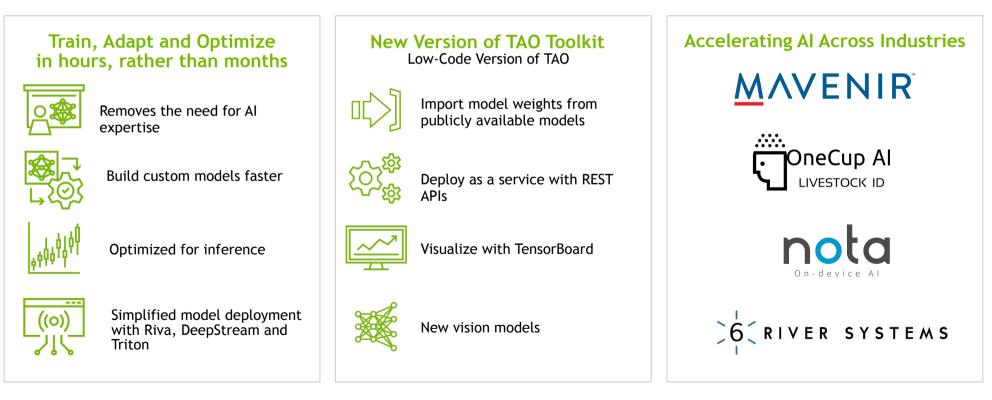
NVIDIA Eos		
GX SuperPOD Powered by 5 00 Quantum-2 IB Switches	76 DGX H100 Systems 360 NVLink Switches	
FP8	18 EFLOPS	6X
P16	9 EFLOPS	3X
P64	275 PFLOPS	3X
n-Network Compute	3.7 PFLOPS	36X
Bisection Bandwidth	230 TB/s	2X
NVLINK Domain	256 GPUs	32X

Blueprint for OEM and Cloud Partner Offerings

Cloud Native | Performance Isolation | Multi-Tenant


X-Factors compare performance over DGX A100 SuperPOD based supercomputer configuration with same number of Nodes

VI. Nvidia AI Platform


Accelerating the Next Wave of AI: AI Platform Updates

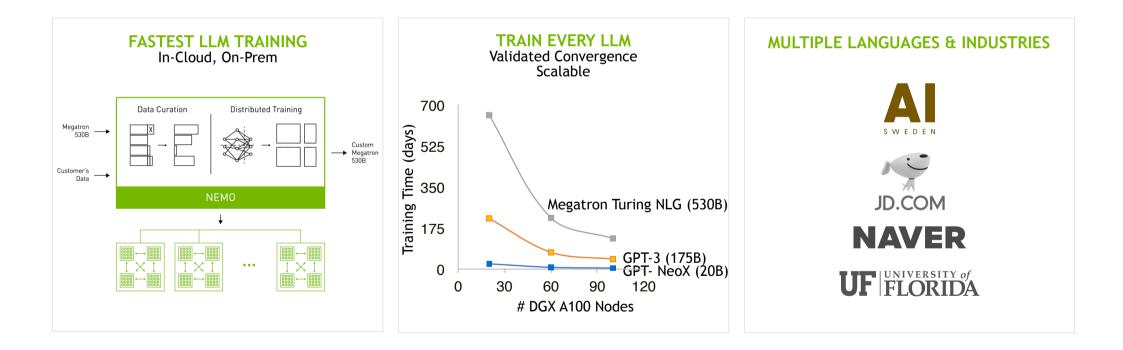
TAO

Framework for creating custom, production-ready models to power speech and vision AI applications.



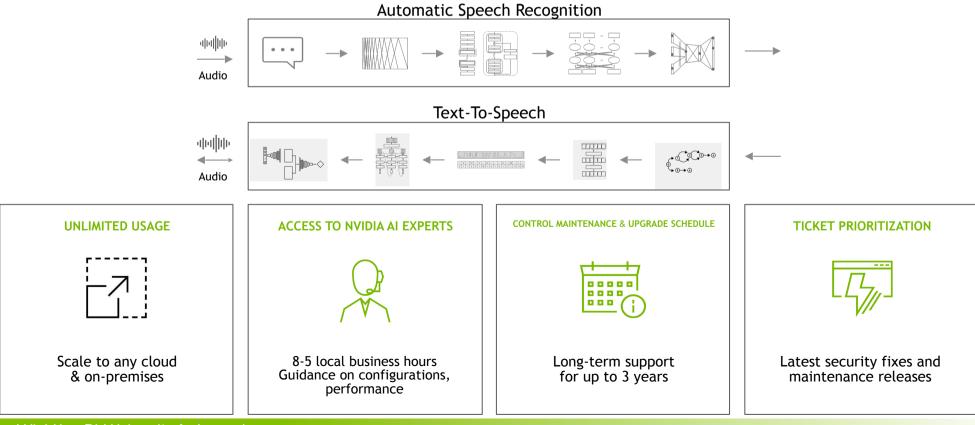
https://developer.nvidia.com/tao

Triton


Open-source inference serving software for fast, easy inference deployment.

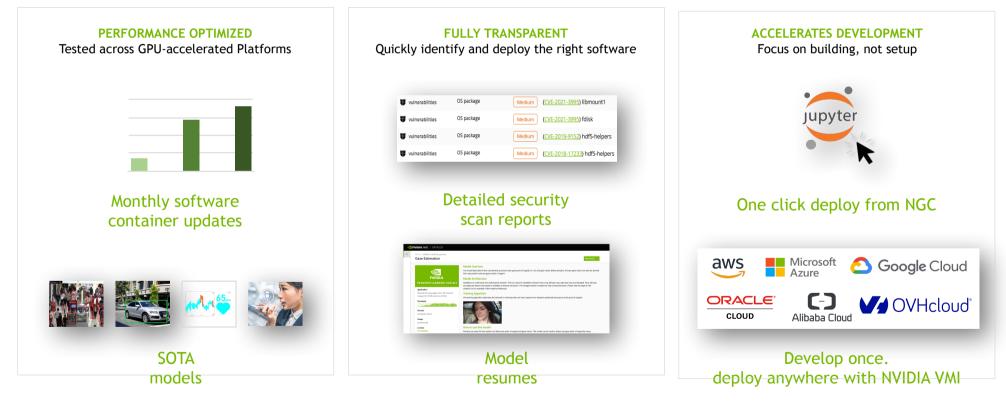
Nemo Megatron

Accelerated framework for training large language models.



Riva 2.0

World-class speech AI.


• Fully customizable.

Supported with Riva Enterprise.

The hub of GPU-optimized software

1.5M+ users millions of downloads

*8x NVIDIA A100 40GB. NVIDIA DGX. ResNet-50. Mixed Precision. 256 batch size.

Thanks for your attention!

 You can always reach me in Spain at the Computer Architecture Department of the University of Malaga:

- e-mail: <u>ujaldon@uma.es</u>
- Web page: <u>http://manuel.ujaldon.es</u> (english/spanish versions available).

