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Motivation % W TECNICO
LISBOA
boa

— Energy-efficient architectures: Sprinting towards Exascale Systems
— Heterogeneity: compute and memory capability, specialization (CPU, GPU, big.LITTLE, FPGA)
— Performance, power, energy and efficiency trade-offs

— Application design: Exploiting architecture diversity to reach efficiency
— Different computational and memory requirements
— Painful optimization and characterization (for each architecture)

— How far can we go: Performance, Power, Energy and Efficiency Maximums?
— In asimple, insightful and fast way (allowing the first-order analysis)
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RECAP: ORIGINAL ROOFLINE MODEL*

CACHE-AWARE ROOFLINE MODEL

APPLICATION CHARACTERIZATION WITH CACHE-AWARE ROOFLINE MODEL

ON-GOING (FUNDED) PROJECTS

* Williams S., et. al., “Roofline: An insightful visual performance model for multicore architectures”, CACM (2009)
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Multi-cores and the

LISBOA

Roofline Model W TECNICO

Computation (flops)
EEEEEN

Tﬂap

Overlapped in time:

Ty =max{ Tf.'op, Tmem?}

PRIVATE

Communication (bytes)

T

mem

JSHARED =

— General-purpose processors with complex memory hierarchy
— Multiple cores with powerful out-of-order engines
— Several levels of memory hierarchy: private/shared caches + deeper (and diverse) memory levels

OBSERVATION: Computations and communication (data transfers) simultaneously performed

— The overall execution time can be limited either by the time to compute or by the time taken to transfer data
W — Different Roofline Models observe memory traffic differently!
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DRAM Roofline Model - TECNICO
ines LISBOA

Architecture Parameters What to measure?

Computation (flops)
Fp Performance (Flops/s) . . . . . . - |
Y } 7
Y y
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DRAM vy vV Yy

Communication (DRAMbytes)
DRAM ]

— DRAM ORM: DRAM-based Original Roofline Model

— Memory traffic: bytes between DRAM and LLC
— Memory Bandwidth: DRAM to LLC, i.e., DRAM bandwidth \,i\é«\
— Compute performance: Flops delivered by the core(s) w Q,o“é

— Intensity (x-axis): Flops/DRAMBYytes
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Original Roofline Model

Architecture Parameters

F Performance (Flops/s)
P

LLC Bandwidth

_
e

What to measure?

Computation (flops)

‘n‘ } r)

3
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A \J

L3 ORM

Yy Yy Yy

H
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— L3 ORM: L3-based Original Roofline Model

— Memory traffic: bytes between LLC and L2

— Memory Bandwidth: LLC to L2, i.e., L3 bandwidth

— Compute performance: Flops delivered by the core(s)
— Intensity (x-axis): Flops/L3Bytes

Communication (L3bytes)

Communication (DRAMbytes)

J
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L3 ORM

20

Flops/DRAMbytes ™™~~~ P

Fal 2?

20

2 2
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Original Roofline Model TECNICO
LISBOA

Architecture Parameters What to measure? b

Computation (flops) !

HierarcdiBall ORM

F Performance (Flops/s)
P >

a
£

-

U L1 oRM il EEEEEEE | Fopskiys
Communication (L1bytes) 7 ! LN ? ? ?
L2 Bandwidth R il e
PR T EEEEEEE K
1 \ Communication (L2bytes) w 923‘
\ j Vv L2 ORM
B LLC Bandwidth R ¥ BDOEEERENR w b
LLC L3 ORM G Eo Communication (L3bytes) Flops/L2bytes™ ",
L3 (LLC) T I B
B X4 :[ 2 TS ‘
DRAM Lt v Y — Communication (DRAMbytes) 1
 omw
10
.. . Flops/L3bytes ™"~~~ \
— Lx ORM: Lx-based Original Roofline Model ol z-qp PEBEIE.
— Memory traffic: bytes between two subsequent memory levels
107 b
— Memory Bandwidth: Lx bandwidth o
— Compute performance: Flops delivered by the core(s) w Q,o“é
— Intensity (x-axis): Flops/LxBytes ol
T Flops/DRAMbytes ™™~~~ P

L .
W = = 2 » ? 7
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Hierarchical ORM TECNICO
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Architecture Parameters

Bandwidth between memory levels
F Performance (Flops/s) I
P - | S
L1 Bandwidth _ 107
L1 L1 ORM
L2 Bandwidth D ;
10
L2 L2 ORM
B LLC Bandwidth . ,
e ~ (3 08Mm ’ i 10 _ _
L3 (LLC) Hierarchical ORM

A

} 4 ) Ny (4 ORMs in one chart)
BDRAM Yy \[ A Yy 107 I L 1 L 1 N 1 s 1 " 1

| Arithmetic Intensity (Flop/Xbyte)

— Hierarchical ORM: Several Lx-based Original Roofline Models in a single plot

— Memory Bandwidth: Lx bandwidth (for each ORM)
— Compute performance: Flops delivered by the core(s)
— Intensity (x-axis): Flops/LxBytes
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Architecture Parameters

F Performance (Flops/s)
P

>

Hierarchical ORM

B L1 Bandwidth
L1 L1 ORM
L2 Bandwidth
- L2 ORM
B LLC Bandwidth
LL L3 ORM
Boram

2 )

TECNICO
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Bandwidth between memory levels

M

10

( L3 (LLC) J

A A .l[ A A A
Yy Yy

Yy

Nléiﬁ_gle Application: 4 points
(one for each ORM)

Hierarchical ORM
(4 ORMs in one chart)

10-1 I 1 N 1 L 1 " 1 " 1 L 1

-

2-4 2-2 20 22 24
Arithmetic Intensity (Flop/Xbyte)

— Hierarchical ORM: Several Lx-based Original Roofline Models in a single plot

— Memory Bandwidth: Lx bandwidth (for each ORM)
— Compute performance: Flops delivered by the core(s)
— Intensity (x-axis): Flops/LxBytes

— Application characterization: As many points as memory levels (one for each ORM)

U
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CACHE-AWARE ROOFLINE MODEL

-  PERFORMANCE*
-  EXTENSIONS: POWER AND ENERGY-EFFICIENCY

APPLICATION CHARACTERIZATION WITH CACHE-AWARE ROOFLINE MODEL

*A. llic, F. Pratas and L. Sousa “Cache-ware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters (2014)

U
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LISBOA

Cache-aware Roofline Model (CARM) % W TECNICO
boa

Architecture Parameters

Maximum Performance (GFlops/s)

P

_—

-

BL1->c

BLZ-*C

BLLC-'C

BD+G
DRAM to Core Bandwidth (GBytes/s)

What to measure?

Computation (flops) Cache-aware Roofline Model*:
EEEEES
| - | Attainable Performance (Gflops/s)
flop yTTTTTTTT e
Overlapped in time: gealj(sgic Bg“dWithh ()Gbytesl s)
T=max{Ty T} i L s A
] i
Communication (bytes) Fo =flops/Ty = min {F, By.cxAl}
14
EEEEEN i
' Tmem ' Arithmetic Intensity (flopslbytes)_é

Communication: All data traffic at the
memory ports (as seen hy the core)!

CARM: visual representation of the limits of parallel processing on contemporary multi-cores

— Considers memory traffic and computation from the consistent architecture point of view (cores)

— Relates the peak compute performance and realistically achievable bandwidth with Arithmetic Intensity (Al)
— Unifies the complete memory hierarchy in a single plot model

— CONSTRUCTION: How to obtain these bandwidth values? (only B, .. directly derivable from data sheets)

W * |lic A., Pratas F., Sousa L., “Cache-aware Roofline Model: Upgrading the loft”, IEEE CAL (2014)
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Developed Tools: :
: TECNICO
Methodology and micro-benchmarks c%ma W LISBOA

— CARM-oriented tools: construction, validation and application characterization
— SchedMon?: Software tool for near-OS counter-based monitoring (multiplexing and shed events)
— LARM3: CARM bandwidth and FP performance micro-benchmarks (NUMA/KNL CARM)
— CARM validation tools and micro-benchmarks?

1024 4 Cores L1-C = 672GB/s « Theoretical maximum reached! // Configured Counters
512 - v CPU_CLK_UNHALTED . CORE/REF
MEM_UOP_RETIRED.ALL LOADS
— 256 MEM UOP_RETIRED.ALL STORES
= 1Core o Intel i7 3770K
S 108 | e L3-C  AVX 2LD+ST
S
S 6al // AVX Assembly: 2LD+1ST
e vmovapd 0 (%rax), %ymmO
8 3L T ™ . DRAM-LLC vmovapd 32 (%rax), %$ymml
each point: ?\‘ ------------------------ vmovapd $ymm2, 64 (%rax)
16 |  median of 8192 runs B DRAM-C vmovapd 96 (%rax), %$ymm3
B B 0 .. vmovapd 128 (%rax), $Symm4
8 T T S R R vmovapd gymm5, 160 (%rax)

210 212 214 216 218 220 222 224 226 228 230
Data Traffic [bytes]
1 Tanica L., et. al. “SchedMon: A Performance and Energy Monitoring Tool for Modern Multi-cores”, MuCoCoS/Euro-Par (2014)

2 Denoyelle N., et. al., “Modeling Large Compute Nodes with Heterogeneous Memories in CARM”, PMBS, SC (2017) and IEEE TPDS (2018)
W 8) Marques D., “Analyzing Performance of Multi-cores and Applications with Cache-aware Roofline Model”, HPBench, HPCS (2017)
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Performance [Gflops/s]

W * |lic A., Pratas F., Sousa L., “Cache-aware Roofline Model: Upgrading the loft”, IEEE CAL (2014)

Cache-aware Roofline Model

MAD (Peak performance)

4 Cores

(AVX MAD)
Intel 3770K
(Ivy Bridge)
1 L 1 L 1 L 1 L 1 L 1 L 1 1 L |
28 26 24 22 20 22 24 26 28

Arithmetic Intensity [flops/byte]

* Total Cache-aware Roofline Model

- Includes all transitional states (traversing the
memory hierarchy and filling the pipeline)

- Single-plot modeling for different types of
compute and memory operations

TECNICO
LISBOA

boa

J

Insightful single plot model

- Shows performance limits of multicores

- Redefined Al: flops and bytes as seen by core
- Constructed once per architecture

Considers complete memory hierarchy
- Influence of caches and DRAM to performance

Applicable to other types of operations
- not only floating-point

Useful for:
- Application characterization and optimization
- Architecture development and understanding

9/10/2019
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Cache-aware Roof!lne Model: TECNICO
Interpretation ines LISBOA

512

' ' * Performance analysis with CARM
FVIA (Peak Performance) . . . . ” ’
256 - Application (kernel) is a single “dot
128 7 _ADOMULgEd j"e_f;"_’"laflce_) - In respect to their Al and FP Performance
guj 64 i
3 © o -
% % « Draw an imaginary vertical line at app Al
£ 16 : - Arithmetic intensity: Property of the application
£ - Should not change (unless the algorithm changes
s @ Cache-aware ! ge J ges)
& 4 Roofline Model !
2 ! o * Intersected roofs: potential bottlenecks
1 A R B S S - Priority to the roofs above
0.015625 0.0625 0.25 1 4 16

Arithmetic Intensity (FLOP/Byte) - Roofs below are also important!

* Optimization hints Optimization: “Break the above roofs”

- Memory: improve access pattern, use of caches - Optimizations should improve the performance
- Compute: vectorization, FMAs, parallelization - Points move up in the CARM plot
- Shady: all kinds of everything (mem-+comp)

W *Marques D., et. al., “Performance Analysis with Cache-Aware Roofline Model in Intel Advisor”, HPCS (2017)
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Cache-aware Roofline Model in
Intel Advisor

Performance (GFLOPS)

64.12

0.36 1 oo

eC DP Vector FMA Peak (single-threaded): 64.12 GFLOPS®

SP Vector Add Peak (sihgle-threaded): 64.11 GFLOPS
] -

rd
o DP Vector Add Peak Eéiﬁgle-tl’ureadé-:ﬁ: 16 GFLOPS'

30

Scalar :néi-_'i Peak (single-threaded): 8.01 GFLOP
2
C X '
&
\ e\
oG ) ,,-,}ci"'d
3
anhe Q. -
N
220 |.
0.026 4.06

Arithmetic Intensity (FLOP/Byte)

( |nte|) Advisor Cache-aware Roofline

- Automatic construction (from NHL to KBL-X)

- Break-down by application phases, loops and functions
(hierarchical feature)

- In-depth application profiling and optimization hints

TECNICO
LISBOA

e U

Performance analysis with CARM
- Applications (kernels) as single “dots”
- In respect to their Al and FP Performance

Draw an imaginary vertical line at app Al
- Arithmetic intensity: Property of the application
- Should not change (unless the algorithm changes)

Intersected roofs: potential bottlenecks
- Priority to the roofs above
- Roofs below are also important!

Optimization: “Break the above roofs”

- Optimizations should improve the performance
- Points move up in the CARM plot

“‘incredibly useful diagnosis tool (that can guide the developers in the application optimization process),
ensuring that they can squeeze the maximum performance out of their code with minimal time and effort.”

U

9/10/2019
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Cache-aware Roofline Model:
Power Consumption

TECNICO
LISBOA

e U

« Performance: Computations (flops) and communication (bytes) overlap in time

- Power consumption: Superposed contributions of flops and bytes

1 1 1 1 1 1 1 1 1 1 1 1 1 1
28 26 24 22 20 22 24 26 28 710 12 714 716 ;18
Arithmetic Intensity [flops/byte]

U
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0|z A
Dz i\ Package
= ¢ I A
IR i i\
[ — 1 Y
g VAN
& E L1-C ’/ I' \‘\ ‘\ D-C
g (Package) / , \ \.(Package)
Il Il Il - \_- Il Il Il A\DD/MUL\ % 3 'I Dﬁc‘\\ \‘\
28 26 24 22 20 22 24 26 28 S / /(COI’G) \\\ \~\_\.
Arithmetic Intensity [flops/byte] CILJ / KN - e y
Power uncore (D-C) g - T~ - VPS
[ W S R LT /' =
P /
— ‘/
21, Pﬂ”’ﬁi
O é PY L ANy
g % 1 1 L 1 1 1 1 1 1 1 |
[
2 2—8 2—6 2—4 2 2 20 22 24 26 28 210
o
P (L15C/L25C/L3>C) P . . .
o PR T R Arithmetic Intensity [flops/byte]

* llic, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Cache-aware Power & Energy-Efficiency Modeling...”, IEEE Transactions on Computers (2016)
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Efficiency CARMs TECNICO
LISBOA

_ 240 -
232 | AP F Intel 3770K |
- | Power-efficiency | e by Bridge Energy
—228 [ o
224 ¢ E
§ [ 228 =
=220 | =< I
5’ S|
g 216 S
£ @ 220
Ll: 212 Ll 216
(Y]
2 28 512
a 4 Cores AVX MAD
24 AVX MAD 28 (4 cores)
20 L 1 L 1 L 1 L 1 L | 24 L 1 L 1 L 1 L 1 L 1 L 1 L |
26 24 272 20 22 24 26 28 26 24 272 20 22 24 26 28
Arithmetic Intensity [flops/byte] Arithmetic Intensity [flops/byte]
P Maximum Efficiency AVX MAD (4 cores) 20
L ——— — VX ADDMUL 4 | EDP-efficiency |
7 2° o 28
o n
G & 212
= 5 =
0 2 > 2-16
C (S}
(V] c
E 2-4 — g 2720
] Energy-efficiency | £ 2
9 [N
g 2-6 8 2_28
w 532 AVX MAD
(4 cores)
2-8 . ] . ] . ] . ] . ] . ] . ] >-36 . ] . ] . ] . ] .
276 24 22 20 22 24 26 28 276 24 22 20 22 24 26 28
Arithmetic Intensity [flops/byte] Arithmetic Intensity [flops/byte]
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Cache-aware Roofline Model: Use Cases é@ IF%\I{JI%O
u(ﬁgsboa

| Application Characterization |

AVX MAD , . L3(Avx) AVX MAD
[ — ] -7 . / s
o4 | DBL ssE A - AYX MUL/SSEMAD \ @V-"AVX MUL/SSE. MAD
e e = 2° __SSE MU7DBL MAD
v SSE ITiDBL MAD g e oeLmuL
S 2t ST DBLMUL 5 22
5 tonto [ dgemm M E :
;- vdot [ u @ . 2
bl vmmul O caleulix A ) O 5.4
g 20 gamess W 2dftc J 2 C 2
e gromacs @ 3dftc O £ E
= namd A spmmul A w
£ poviay W wmul 3 26
[ spvdot [J  zeusmp © b=
a spvwmul Q) cactusADM =4 g
milc A lesliesd X w
e o g m X L1(DBLMUL) "~ 28
4 | | I I I ! ) 23 I I I . I L I | | )
2-7 2-6 2-5 2-41 2-3 2-2 2-1 20 21 2-7 2-6 2-5 2-4 2-3 2-2 2-1 2-8 2-7 2-6 2-5 2-4 2-3 2-2 2-1 20 21 22
Arithmetic Intensity [flops/byte] Arithmetic Intensity [flops/byte] Arithmetic Intensity [flops/byte]
SSE MUL L1 (AVX MAD)
z 21} e
0 o
g &
: = z
S
S ;
E e g
2 5 p
& 2 -~
w e
20 B e 1 1
24 23 22 22 21 20
Arithmetic Intensity [flops/byte] Arithmetic Intensity [flops/byte] Arithmetic Intensity [flops/byte]

* llic, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Cache-aware Power & Energy-Efficiency Modeling...”, IEEE Transactions on Computers (2017)
* Antdo, D., et.al.,“Monitoring Performance and Power for Application Characterization with CARM”, PPAM’13



Cache-Aware Roofline Model:
Extensions

TECNICO

CARM-based DVFS analysis

E! PERFORMANCE CARM POWER CARM (PACKAGE DOMAIN)

27

Performance [Gflops/s]

N
el

R R _R R, AaR
. L1 12M3 60 - R [P ATE! 22
2 2 s6 |- Intel 3770k 41 N R =
AVX MAD /
. Yl /i 3.0GHz ¥ - )\7 _8-20
N
Jii 2.5GHz ]
>2-2
2.0 GHz g
"""""" ity ] L1 L2 L3 DRAM35GHZ
,I 'G _4 eTT—— o
i 4 16 GHz £2 ——— —— —— — 3.0GHz
N )N w 2.5 GHz
T/ T, ©
e /) & 226 Intel 3770K 2.0 GHz
&/ S Intel 3770K & (AVX MAD) ——————————— 1.6 GHz
[=
L \,IV g 1 g 1 (AVX MADI) 1 1 1 1 1 1 1 J lu 2.8 1 1 1 1 1 J
-2 0 A 2 a -8 -6 -4 -2 0 2 4 6 8 -6 -4 -2 0 2 4 6
2 3 - 2 28 26 24 22 20 2 4 26 2 2 2 2 2 2 2
Arithmetic Intensity [flops/byte] Arithmetic Intensity [flops/byte] Arithmetic Intensity [flops/byte]
| GPU CARM | NUMA CARM
281 c1-1168 SP FMA (Peak Performance NUMANODE:0 NUMANODE:1
S o1i01 - C 190.1 7 iy - 5 190.1 7 iy 5 5
212} €3=0986 GHz : i SR A
C4=0.785 3 ; S 3
Zon | €5=0595 -
g AST%7 FirsTSIBBER
EZ"’ ; e " &Q\
Y 29 5- §@0 %&%Q/ 5. @\DO'
g & 10 S Rt S
€28 o7 o
S 2 G S
L <) b’ FIRSTTOUCH e FIRSTTOUCH, RS
a5 - D p3MM /}/ \ R/ /Jx -5
aut () cuGEMM it e AT &
5 ' . Acu‘BIackScholes 1.00 P 1v‘322&m‘;'2?;t?5? 1.00 //,Néz&*/ - v‘gggn_m:i?foz.s‘o
23 22 21 20 21 22 23 24 278 2 2% 2 7t 0 PR I R
Arithmetic Intensity (Flops/Byte) Flops/Byte Flops/Byte

* llic A., et.al., “Beyond the Roofline: Cache-aware Power & Energy-Efficiency...”, IEEE Transactions on Computers (2017)
* Lopes A, et.al, “Exploring GPU performance, power and energy-efficiency bounds with CARM””, ISPASS (2017)
* Denoyelle N., et.al., “Modeling Non-Uniform Memory Access on Large Compute Nodes with the Cache-Aware Roofline Model”, IEEE

Transactions on Parallel and Distributed Systema (2018)
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Summary % W TECNICO
ines LISBOA

SEVERAL CACHE-AWARE ROOFLINE MODELS (EXPERIMENTALLY

VERIFIED)

— (Total) Performance CARM

— (Total) Power CARM: for several domains, i.e., power of cores, uncore power and
complete package power

— Energy-Efficiency CARM: Performance + Power Domains
— Energy, Power-efficiency and EDP-based CARMs
— DVFS, GPU and NUMA CARMs

ON-GOING WORK

- CARM FOR ARM, FPGAS, COMPLETE SYSTEM ...

9/10/2019 21



Outline = W TECNICO
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APPLICATION CHARACTERIZATION WITH CACHE-AWARE ROOFLINE MODEL
- APPLICATION-DRIVEN CARM

- ISO3DFD CASE STuDY

- PROXY-APPLICATIONS FROM EXASCALE COMPUTING PROJECT

- BAYESIAN K2 SCORE

*A. llic, F. Pratas and L. Sousa “Cache-ware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters (2014)
W Recently submitted publication

9/10/2019 22



Application-driven CARM TECNICO
LISBOA

Applications
Can they exploit the modeled absolute maximums?

- Large set of phases with diverse characteristics

- Different instruction mix, vectorization, SP/DP and
LD/ST balance, FP share, memory access pattern...

Hardware
Do the Rooflines reflect the application demands?

- Maximums vary with utilization/execution scenario

- Components/subsystems differently exercised:
ports, compute units, front-end, back-end, sockets ...

- Memory subsystem: deep and diverse hierarchy,
caches (private/shared), DRAM, NUMA, HBM...

Insightful Micro-architecture Modeling
Existing approaches model the absolute maximums

- Disjoint Roofline Methodologies
(Cache-aware, Classic ORM, Hierarchical, Integrated,...)

- May provide misleading optimization guidelines

- Inconclusive bottleneck detection

n 9/10/2019 23




Application-driven CARM TECNICO
LISBOA

Applications
Can they exploit the modeled absolute maximums?

- Large set of phases with diverse characteristics

Application-driven Roofline _ _
- Different instruction mix, vectorization, SP/DP and _ absolute architecture maximums
LD/ST balance, FP share, memory access pattern... ”

compute requirements (AVX/SSE....)

Hardware
Do the Rooflines reflect the application demands?

- Maximums vary with utilization/execution scenario

Traffic Share | Performance impact 100%

50%
L [Ho

L1 L2 L3 DRAM
O O ©)

- Components/subsystems differently exercised:
ports, compute units, front-end, back-end, sockets ...

- Memory subsystem: deep and diverse hierarchy,

caches (private/shared), DRAM, NUMA, HBM... T e S R —

Insightful Micro-architecture Modeling
Existing approaches model the absolute maximums

- Disjoint Roofline Methodologies
(Cache-aware, Classic ORM, Hierarchical, Integrated,...)

- May provide misleading optimization guidelines

- Inconclusive bottleneck detection

9/10/2019 24



Application-driven CARM = TECNICO
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State-of-the-art CARM

540749

%

bound by both memory and compute? [
(quite hard to optimize) B

0.004 200

0.4

72 DP mm Ssp
211 | AVX-512 Scalar
2

|

ADD

LD , EEm 21D/ST
21z @ AUX512

|

o
E
< L1 L2 L3 DRAM
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Application-driven CARM :
TECNICO
(SKL-X) LISBOA

State-of-the-art CARM

82.38 g i
o7
e %
o
»*
\56'@#‘
.a"@a@f
)
bound by both memory and compute? r
Ll (quite hard to optimize) R B Feor)
I SP
AVX-512 AVX2 SSE Scalar

9

FMA ADD DIV

-

FMA ADD DIV

LD N ST 771 LD/ST HEm 2| D/ST
AVX-512  AVX2 SSE : Scalar DP Scalar SP

Memory Bandwidth
N
w
T N N [
=SS SS SN S oy
PNRSSS SRS o
WESSSSRSS S
s ASS SRS
W B SESSS
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LISBOA

. ; — 1SO-3DFD: 3D Finite Difference Code with an Isotropic
l n tel — helps solving differential equations (seismic apps, wave propagation)

https://software.intel.com/en-us/articles/eight-optimizations-for-3-dimensional-finite-
difference-3dfd-code-with-an-isotropic-iso

ISO-3DFD Case study W TECNICO

8th order stencil 3D stencil computation

DISCLAIMER: Optimization courtesy of Cédric Andreolli (Intel Corporation)

Experiments ran on Intel Xeon Gold 6140
(18 cores @ 2.3GHz) 4x16GB DDR4

9/10/2019 27
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ISO-3DFD Case study ) IF%\I{JI%O

Intel Advisor CARM

(product release version)

Scalar Add Paak: 82.38 GFLOPS

bound by both memory and compute? [

(quite hard to optimize)

FLOP/Byte (Arithmetic intenaity)
0.004 2.
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Preliminary Outcomes:
ISO-3DFD Case study ; ‘ LISBOA

TECNICO

Intel Advisor CARM

(product release version)
SCIJHMGPIIK‘DE.MGWS,

I Memory: L3 (DRAM?
_?_ Compute: Scalar.roof

9
8238 \.J

What is my
pbottleneck?!

bound by both memory and compute? [

(quite hard to optimize)

FLOP/Byte (Arithmetic intenaity)
0.004 2.
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Preliminary Outcomes: ~
ISO-3DFD Case study (“)\/‘r\\jsboa L [SBOA

TECNICO

Intel Advisor CARM Integrated Roofline

(product release version) (Advisor experimental feature)
SCIJHMGPIIK‘DE.MGWS’

I Memory: L3 (DRAM?
_?_ Compute: Scalar.roof

Scalar Add Peak: 82.17 GFLOPS

840749

)
L3 DRAM

What is the
pbottleneck?!

multiple points for a single app
(one for each memory level, Als displaced
wrt the traffic between the memory levels)

| |

FLOP/Byte (Arthmetic Int=nsity)
T

bound by both memory and compute? [

(quite hard to optimize) 024

FLOP/Byte (Arithmetic intenaity)

T T
0004 208 0.004 8
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Preliminary Outcomes: ~
ISO-3DFD Case study (“)\/‘r\\jsboa L [SBOA

TECNICO

Intel Advisor CARM Integrated Roofline

(product release version) (Advisor experimental feature)
SCIJHMGPIIK‘DE.MGWS’

I Memory: L3 (DRAM?
_?_ Compute: Scalar.roof

Scalar Add Peak: 8217 GFLOPS
AA

840749

o
L3 DRAM

What is my
N
pottleneck? Bottlenecks: Intersect respective rooflines
w,l Point of minimum performance as bottleneck
2 (This app: Strictly compute bound)
bound by both memory and compute? [ | |
04 . (quite hard to optimize) Beene w"m’;‘u‘ﬂ‘a"w 027 ‘ FLOP/Bte (rshmeso niensis)
0.004 2.08 0.004 8
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Preliminary Outcomes: ~
ISO-3DFD Case study (“)(‘r\igsboa L [SBOA

Intel Advisor CARM Integrated Roofline

(product release version) (Advisor experimental feature)

Scl.llerPuk‘n.aGGElDFS,
I Memory: L3 (DRAM?
_?_Compute: Scalar.roof

Scalar Add Peak 82,17 GFLOPS
LJ AA

840749

o
L3 DRAM

What is my
pbottleneck?!

Bottlenecks: Intersect respective rooflines
Point of minimum performance as bottleneck
(This app: Strictly compute bound)

bound by both memory and compute? [ | |
o (quite hard to optimize) f 1. 021 FLOP/Byte (Arhmese Iniznsiy)
aoa 20 000 ¢

Hierarchical Roofline
(state-of-the-art approach)

Sca\a““eak 82.17GFLOPS

&b
L3 DRAM

Similar to the Integrated Roofline
Bandwidth observed between memory levels
(This app: Strictly compute bound)
]
FLOP/Byte {Asithmetic Intensity)
000 s

024
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840749

Preliminary Outcomes:
ISO-3DFD Case study

Intel Advisor CARM

(product release version)
SCIJHMGPIIK‘DE.“GH.OFS’
I Memory: L3 (DRAM?
_?_ Compute: Scalar.roof

bound by both memory and compute?

L

_
e

TECNICO
LISBOA

Integrated Roofline
(Advisor experimental feature)

Scalar Add Peak: 82.17 GFLOPS
Yy

2 L3 DRAM
M Bottlenecks: Intersect respective rooflines

Point of minimum performance as bottleneck
(This app: Strictly compute bound)

!

(quite hard to optimize) ey 024 e FLOP/Byte (Arithmetc Intensity)
\ Can we improve InSlghth‘nesfsc
cifl
; me app-spe . . .
Absolute arfh'ttecwre ”l'ai"t’:]‘“mf) by leveraging SO Hierarchical Roofline
(can my application exploit those?) data?! (state-of-the-art approach)
Sca\a’“eak 8217GFLOPS

&b
L3 DRAM

024

Similar to the Integrated Roofline
Bandwidth observed between memory levels
(This app: Strictly compute bound)
]

FLOP/Byte (Arithmetic Intensity)
T

8
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Preliminary Outcomes:
ISO-3DFD Case study

Intel Advisor CARM
(product release version)
SCIJHMGPIIK‘DE.“GB.OFS’
I Memory: L3 (DRAM?
_?_ Compute: Scalar.roof

bound by both memory and compute? [ _

(quite hard to optimize)

S

TECNICO
LISBOA

Integrated Roofline
(Advisor experimental feature)

Scalar Add Peak: 8217 GFLOPS
AA

T
® oo
2 L3 DRAM

Bottlenecks: Intersect respective rooflines
Point of minimum performance as bottleneck
(This app: Strictly compute bound)

1
&

Absolute architecture maximums
(can my application exploit those?)

Intel Advisor Intel SDE
(5 916.518s %
Scalar | Total time Memory :l 34%
916.518s Compute | J1e%
Self time Mixed :| 41%
|> Static Instruction Mix Summary~ I Chers | ] 7%
» Dynamic instruction Mix Summa

CPU Total Time
2.99808e-08s | 5.75631e-06s

Per iteration | Per Instance

Also decoupled by:

- operation type (e.g., LD/ST, ADD/MAD),

Micro-benchmarking
(counters, assembly)

Intel VTune

FP Scalar 59.5%
FP Vector | 0%

40.5%

Vector Cap. Usage | 6.3%

- ISA extension (AVX512,AVX, SSE, Scalar),
- data precision (single/double) ...

upon which the respective ratios are derived

L. !
S I‘Nmm 0z b - FLOP/Bye (rhmess ensiy)
Can we improve msnghtfulnes_fsic
by |everaging some app-spect
data?!

Source-code
analysis

for (TYPE_INTEGER ix=8; ix<ixEnd; ix++) {
value = ptr_prev[ix]+c@
+ cl * (FINITE_ADD(ix, 1)
+ FINITE_ADD(ix, vertical 1)
+ FINITE_ADD(ix, front_1))
+ c2 * (FINITE_ADD(ix, 2)
+ FINITE_ADD(ix, vertical 2)
+ FINITE_ADD(ix, front_2))
+ €3 *x (FINITE_ADD(ix, 3)
+ FINITE_ADD(ix, vertical 3)
+ FINITE_ADD(ix, front_3))
+ ch ¥ (FINITE_ADD(ix, 4)
+ FINITE_ADD(ix, vertical_4)
+ FINITE_ADD(ix, front_4))
#1f( HALF_LENGTH == 8)
+ cb * (FINITE ADD(ix, 5)

U
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Preliminary Outcomes: ~
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Intel Advisor CARM Integrated Roofline

(product release version) (Advisor experimental feature)
SCIJHMGPIIK‘DE.“GWS’

I Memory: L3 (DRAM?
_?_ Compute: Scalar.roof

Scalar Add Peak: 8217 GFLOPS
AA

840749

o
L3 DRAM

Bottlenecks: Intersect respective rooflines
Point of minimum performance as bottleneck
(This app: Strictly compute bound)

| !

FLOP/Byte (Arthmetic Int=nsty)
T

bound by both memory and compute? [

(quite hard to optimize) 024

FLOP/Byte (Arithmetic intenaity)

T T
0004 208 0.004 8

T
82.38 4 Scalar Add Peak: 82.17 GFLOPS

840149

Application-driven Rooflines
(precise architecture modeling)

Preserved model simplicity
(intuitiveness, remove clutter)

4 .
0933“ FLOP/Byte (Arithmetic Intensity)

T
W 0.04 2.09
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Preliminary Outcomes: ~ .
TECNICO
ISO-3DFD Case study é%iboa LISBOA

Intel Advisor CARM Integrated Roofline

(product release version) (Advisor experimental feature)
SCIJHMGPIIR‘DE.MGB.OFS’

I Memory: L3 (DRAM?
_?_ Compute: Scalar.roof

Scalar Add Peak 82,17 GFLOPS
LJ AA

840749

o
L3 DRAM

Bottlenecks: Intersect respective rooflines
Point of minimum performance as bottleneck
(This app: Strictly compute bound)

| !

FLOP/Byte (Arthmetic Int=nsty)
T

bound by both memory and compute? [

(quite hard to optimize) 024

FLOP/Byte (Arithmatic intensity)
T ‘ ;
. b 0.004 .

PROPOSED

T
Scalar Add Peak: 82.17 GFLOPS

82.38 |

840149

Application-driven Rooflines
(precise architecture modeling)

Preserved model simplicity
(intuitiveness, remove clutter)

Improved bottleneck detection
(model resembles app demands)

4 .
0933“ FLOP/Byte (Arithmetic Intensity)

T T
W 0.04 2.09
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Preliminary Outcomes:
ISO-3DFD Case study

Intel Advisor CARM

(product release version)
SCIJHMGPIIK‘DE.“GH.OFS’

I Memory: L3 (DRAM?
_?_ Compute: Scalar.roof

840749

bound by both memory and compute?
(quite hard to optimize)

L

FLOP/Byte (Arithmetic intenaity)

208

82.38 |

02+

TECNICO
LISBOA

_
e

Integrated Roofline
(Advisor experimental feature)

Scalar Add Peak: 8217 GFLOPS
AA

o
L3 DRAM

Bottlenecks: Intersect respective rooflines
Point of minimum performance as bottleneck
(This app: Strictly compute bound)

840149

Application-driven Rooflines
(precise architecture modeling)

Preserved model simplicity
(intuitiveness, remove clutter)

Improved bottleneck detection
(model resembles app demands)

w !
FLOP/Byte (Arthmetic Int=nsity)
0.004 8
= Scalar Add Peak: 82.17 GFLOPS
Quite optimized 3D stencil:
Data locality (caches) boosts the performance
DRAM prevents from reaching the maximums
59.5%
0%
. 40.5%
Retirement

Memory

43.6 385

Vector Cap. Usage | 6.3%

FLOP/Byte (Arithmetic Intensity)

T
0.04

T
2.09

U
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Preliminary Outcomes: ~ .
TECNICO
ISO-3DFD Case study é%boa LISBOA

Intel Advisor CARM Integrated Roofline
(product release version) (Advisor experimental feature)
scmrmr’nk‘n.aeaa.oﬂs’
I Memory: L3 (DRAM?
_?_ Compute: Scalar.roof

Scalar Add Peak: 8217 GFLOPS
AA

840749

o
L3 DRAM

Bottlenecks: Intersect respective rooflines
Point of minimum performance as bottleneck
(This app: Strictly compute bound)

bound by both memory and compute? [ ] | |
0.4 (quite hard to optimize) e w"m;mam] 024 Data Transfers and Bandwidth ® e
= - oo L R i i :
PROPOSED sy
4238 | g _ _ _ Scalar Add Peak: 82.17 GFLOPS sa Ef,;,'f
L .
¢ v
Application-driven Rooflines Memory traffic shares
(precise architecture modeling) Quite optimized 3D stencil: (leverage other Advisor data)

Data locality (caches) boosts the performance
DRAM prevents from reaching the maximums

Preserved model simplicity
(intuitiveness, remove clutter)

Performance impact

Mermory Traffic* Performance Impact* (pinpointing the bottlenecks)
| |

97% | | 88% |

Improved bottleneck detection
(model resembles app demands)

L1
3% L2 5%
0% L3 0% Work in
1% | DRAM |l 7% progress

* obtained from cache simulation

FLOP/Byte (Arithmetic Intensity)

T T
W 0.04 2.09
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Preliminary Outcomes:
ISO-3DFD Case study

Intel Advisor CARM

(product release version)

Scalar Add Paak: 82.38 GFLOPS

840749

I Memory: L3 (DRAM?
_?_Compute: Scalar.roof

bound by both memory and compute? [

(quite hard to optimize)

FLOP/Byte (Arithmetic intenaity)
0.004 2.

82.38 |

840149

Application-driven Rooflines
(precise architecture modeling)

Preserved model simplicity
(intuitiveness, remove clutter)

Improved bottleneck detection
(model resembles app demands)

Consistent characterization
(eases code vectorization)

TECNICO
LISBOA

_
e

Integrated Roofline
(Advisor experimental feature)

Scalar Add Peak: 8217 GFLOPS
AA

o
L3 DRAM

Bottlenecks: Intersect respective rooflines
Point of minimum performance as bottleneck
(This app: Strictly compute bound)
| !
FLOP/Byte (Arithmetic |ntansity)
0004 s

02+

PROPOSED

T
Scalar Add Peak: 82.17 GFLOPS

Memory traffic shares
(leverage other Advisor data)

Performance impact

Mermory Traffic* (pinpointing the bottlenecks)
|

97% |

Performance Impact*
|
| 88%

New set of visual aids
(to drive optimization)

0%

L1
3% L2 5%
L3

0% Wwork in
1% | DRAM B 7% progress

* obtained from cache simulation

FLOP/Byte (Arithmetic Intensity)

T
2.09

T
W 0.04
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Preliminary Outcomes:
ISO-3DFD Case study

Intel Advisor CARM

(product release version)

8238 Eﬁ Scalar Add Peak: DE.MGE].OFS’
o 13
o e
- (<2
%
\JM
Ge\e-"
.n‘i‘H!
o .
5&‘#
ound by both memory and compute?
(fundamentally compute with memory roofs)
04 N
W" FLOP/Byte (Arithmatic inensity)
I:lulﬂl 2

82.38 -

SdOT14D

Scalar

PROPOSED

v
Scalar Add Peak: 82.17 GFLOPS.

> Memory Traffic* Performance Impact*
[ 97% L1 88% |
a
3% 5%
2 e,a\df‘ 2 [ L2 ]
,«'*@ b d 0% L3 0%
# memory bound )
K (just before the ridge) &%
ea“r * obtained from cache simulation
0“7# FLOP/Byte (Arithmetic Intensity)
:

2.09

TECNICO

Intel Advisor CARM

(product release version)

SP Vector FMA Peak: 2400.1 GFLOPS

1000 4

100 4

bound by both memory and compute?
(moves towards memory bound)

FLOP/Byte (Arithmetic Intensity)

1 10

AVX-512

PROPOSED

SP Vector FMA Peak: 2400.1 GFLOPS

?
SP Vector Add Peakr1199.97 GFLOPS

1000
9

100 Performance Impact*

an | 1 4%
| 12 10%
1% L3 1%

10% q DRAM

* obtained from cache simulation
FLOP/Byte (Arithmetic Intensity)

memory bound

(no significant changes in characterization)

1 10

9/10/2019
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Proxy-appllcatlc_)ns fror_n Exascale TECNICO
Computing Project LISBOA

Intel Advisor CARM

(product release version)

1199.2 DP Vector FMA Peak: 1199.2 GFLOPS

840749

?
DP Vector Add Peak: 08 GFLOPS

?
Scalar Add Peak: 82.17 GFLOPS.

FLOP/Byte (Arithmetic Intensity)
T
30.36

swdlite (LLNL, US)
Proxy version of SW4 (3-D seismic modeling)

- Again bunch of stencils ....
- 6 main hotspots (loops)

Intel Advisor CARM:

- All loops are bound by both (mem and comp)
- Loops 1 and 2: Mainly limited by L3

- Loop 3: Between DRAM and L3 (some locality)
- Loops 4, 5 and 6: DRAM bound
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Proxy-applications from Exascale
Computing Project

Intel Advisor CARM
(product release version)

1199.2 DP Vector FMA Peak: 1199.2 GFLOPS

840749

?
DP Vector Add Peak: 08 GFLOPS

?
Scalar Add Peak: 82.17 GFLOPS.

FLOP/Byte (Avithmetic Infensity)

T
30.36

swdlite (LLNL, US)

Proxy version of SW4 (3-D seismic modeling)

- Again bunch of stencils ....
- 6 main hotspots (loops)

Improved interpretation methodology in action:

- Memory traffic shares: Additional performance
insights (explains the dot position)

- Performance impact: Improved optimization hints
(decouples the bottlenecks by their importance)

9/10/2019

TECNICO
LISBOA

'E' 212 =

E 2V S P RN

9 23 ) 't”‘

% 26

;‘ 2‘1 1 Memory Traffic* Performance Impact*

g 22 1 7% L1 9%

w 15% 3%

E 20' Mb[: i 0%

'g 272 8% qDR‘AM

[ . .

G_ 2 - 4 obtained from cache simulation

g1  g=A g 22 25 28
Arithmetic Intensity [flops/bytes]

©
@ =
e o e € e

S
5 -
I;‘ Memory Traffic* Performance Impact*
Q [ m | 1 20%

E 2% [ | L2 17%

= 2% L3 5%
'E 2% ORAM

ﬂJ * obtained from cache simulation

-4
s 251 oA Rl w2 gh g8
Arithmetic Intensity [flops/bytes]

©

@0 >

o< | e meempfemm=- i o
o o

— -

[TH

=,

© Memory Traffic* Performance Impact*

[&] L1 1%

g L2 2%

E L3 0%

22 DRAM

o2

gs?  gpk  gFl G2 b 28
Arithmetic Intensity [flops/bytes]
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Proxy-applications from Exascale

: : TECNICO
Computing Project LISBOA
w212
Intel Advisor CARM D 10 ® swaiite_4
(product release version) 9
1102 | % DP Vector FMA Peak: 1199.2 GFLOPS* % ------ :: e ——————
E DP Vector Add Peak; 59708 GFLOPS ;' ‘:/lermryTrafﬁc" Performance Impact*
o [— v T )
[14] 0% L2 0%
? E 0% L3 0%
Scalar Add Peak: 82.17 GFLOPS. o
E 12%' w!ulmswmaum
o

g 22 25 28
Arithmetic Intensity [flops/bytes]

@
g ® swdlite 5
| 9
FLOP/Byte (Arithmetic \rv:ensriy] u -------- e e
30.36 g ’I.-'Fﬂ-
© ~ Memory Traffic* Performance Impact*
0 [— T )
g 0% L2 0%
sw4lite (LLNL, US) £ m || o
bare bone version of SW4 (3-D seismic 5 o -
modeling) 277 74 g=1 42 25 28
- Again bunch of stencils .... Arithmetic Intensity [flops/bytes]
- 6 main hotspots (loops) -
g
Improved interpretation methodology in action: o
- Memory traffic shares: Additional performance =
insights (explains the dot position) T
- Performance impact: Improved optimization hints §
(decouples the bottlenecks by their importance) £
g 2
o 2

gs?  gpk  gFl G2 b 28
W Arithmetic Intensity [flops/bytes]
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Proxy-appllcatlc_)ns fror_n Exascale TECNICO
Computing Project LISBOA

Intel Advisor CARM

(product release version)

1198.42 g DP Vector FMA Peak: 1198.42 GFLOPS
Q
0 ~— 1 2
K DP Vector Add Peak: .09 GFLQFS7 E 2 .
g 210 0 strictly memory-bound —>
----- r - -
-
S 2 o
5 2
Scalar Add Peak: 82.11 GFLOPS” 8 2 4 Memorg);;rafﬁc’ u RsrformancT I:;'::w
2
g 241 1% 2 |o%
E 20 o% 13 o
O a-2 | e 2% DRAM _ 51%
E 2 4"' * Obtained from cache simulation
Eaels — -
N 2=7 24 97T 92 25 28
FLOP/Byte (Arithmetic Intensity) 4 . N
s05s Arithmetic Intensity [flops/bytes]

ExaMiniMD (SNL) @ 212
§ U3 510 |
Molecular Dynamlcs % 223 | bound by both memory and compute
-]
- 2 main hotspots (loops) § """"""""
- Loop 1 (memory bound), Loop 2 (comp/mem) 8 I
w 0% L2 0%
Improved interpretation methodology in action: E 5 - DiM- -
- Memory traffic shares: Additional performance E - - hanamcarsmiain
insights (explains the dot position) 2°7 274 271 22 25 28
- Performance impact: Improved optimization hints Arithmetic Intensity [flops/bytes]
(decouples the bottlenecks by their importance)
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Bayesian K2 Score ] TECNICO
- LISBOA

How to detect which genes influence traits or diseases?

U
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Bayesian K2 Score e TECNICO
- ines LISBOA

How to detect which genes influence traits or diseases? ———> Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to
influence diseases.

- Calculates score for a combination of K genetic
markers (order).

- Highest score corresponds to SNP combination that
is most likely to influence the trait or disease.

U
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Bayesian K2 Score TECNICO
LISBOA

How to detect which genes influence traits or diseases? ———> Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to
SNE SNR SNE SNE SNE ... SNR,, Class influence traits or diseases.
- Calculates score for a combination of K genetic

P markers (order).
P, - Highest score corresponds to SNP combination that
Patients < P

| |
| |
| |
| | is most likely to influence the trait or disease.
| |
| |
| |

U
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Bayesian K2 Score TECNICO
LISBOA

How to detect which genes influence traits or diseases? ——> Bayesian K2 Score
Genetic Markers High-Order Epistasis
A
-~ N

- Relates genetic markers that are most likely to
SNFO, SNP1 SNP2 SNFa’ SNF: ........... SNF':M Class Inﬂuence tralts or dlseases

- Calculates score for a combination of K genetic

P markers (order).
P, - Highest score corresponds to SNP combination that
Patients < P

l
|
I
l
l
I
|

|

|

| . : : \P col

| is most likely to influence the trait or disease.
|

|

|

U
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Bayesian K2 Score TECNICO
LISBOA

How to detect which genes influence traits or diseases? ——> Bayesian K2 Score
Genetic Markers High-Order Epistasis
A
-~ N

- Relates genetic markers that are most likely to

SNR  SNR  SNE  SNB SNR ... SNR,, Class influence traits or diseases.
(R | | | I | | | | - Calculates score for a combination of K genetic
P | | | | | | | | markers (order).
P, | | | | | | | | | - Highest score corresponds to SNP combination that
Patients < P, | [ [ [ | | | | | is most likely to influence the trait or disease.
[T T T T T T T ]
| I I I I | | | |
R T T T T T T T ]

i a
Populated with values 0,
1and 2

U
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Bayesian K2 Score TECNICO
LISBOA

How to detect which genes influence traits or diseases? ——> Bayesian K2 Score
Genetic Markers High-Order Epistasis
A
-~ N

- Relates genetic markers that are most likely to

SNR  SNR  SNE  SNB SNR ... SNR,, Class ) influence traits or diseases.
(R | | | I | | | | - Calculates score for a combination of K genetic
P | | | | | | | | markers (order).
P, | | | | | | | | | 1 - disease - Highest score corresponds to SNP combination that
Patients < P, | | [ [ | | | [ | ( 0-no disease is most likely to influence the trait or disease.
[ T T T T T T T |
| I I I I | | | |
R T 1T T 1T T 1 T 1/

i a
Populated with values 0,
1and 2

U
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Bayesian K2 Score TECNICO
LISBOA

How to detect which genes influence traits or diseases? ———» Bayesian K2 Score
k=3 1 1 1 High-Order Epistasis
- Relates genetic markers that are most likely to
SNB SNR SN SNE SNE ... SNR,, Class ) influence traits or diseases.
(R | | | | | | | | - Calculates score for a combination of K genetic
P | | | | | | | | markers (order).
P, | [ | | | | | | | 1 - disease - Highest score corresponds to SNP combination that
Patients < P, | | [ [ | | | | | ( 0-no disease is most likely to influence the trait or disease.
e 1T T T T T T T |
T T 7T T 7T T T 1]
R T T 1T 1T T T T 1)
I
Populated with values 0,
land?2

U
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Bayesian K2 Score TECNICO
LISBOA

How to detect which genes influence traits or diseases? ———» Bayesian K2 Score
Ko 1 1 1 High-Order Epistasis
' - Relates genetic markers that are most likely to
SNB SNR SNB  SNE SNE ... SNR,, Class ) influence traits or diseases.
(R | | | | | | | | - Calculates score for a combination of K genetic
P | | | | | | | | markers (order).
P, | [ | | | | | | | 1 - disease - Highest score corresponds to SNP combination that
Patients < P, | | [ | | | | | | ( 0-no disease is most likely to influence the trait or disease.
T T T T T T T |
T T T 7T T T 7]
\RC T T T 1T T 1 T 1/

i a
Populated with values 0,
1and 2

U

9/10/2019  9/10/2019 52 52



Bayesian K2 Score TECNICO
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How to detect which genes influence traits or diseases? ———» Bayesian K2 Score
Ko 1 1 1 High-Order Epistasis
' - Relates genetic markers that are most likely to
SNB SNR SN SNE SNE ... SNR,, Class ) influence traits or diseases.
(R | | | | | | | | - Calculates score for a combination of K genetic
P | | | | | | | | markers (order).
P, | [ | | | | | | | 1 - disease - Highest score corresponds to SNP combination that
Patients < P, | | [ | | | | | | ( 0-no disease is most likely to influence the trait or disease.
e 1T T T T T T T |
0 I [ N N (N N N
\RC T T T T T [ T 1/

i a
Populated with values 0,
1and 2

U
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Bayesian K2 Score TECNICO
LISBOA

How to detect which genes influence traits or diseases? ———» Bayesian K2 Score
k=3 1 1 1 High-Order Epistasis
- Relates genetic markers that are most likely to
SNB SNR SN SNE  SNE ... SNR,, Class ) influence traits or diseases.
(R | | | | | | | | - Calculates score for a combination of K genetic
P | | | | | | | | markers (order).
P, | [ | | | | | | | 1 - disease - Highest score corresponds to SNP combination that
Patients < P, | | [ | | | | | | ( 0-no disease is most likely to influence the trait or disease.
1T T T T T T T |
T T T 7T T T 7]
R T T 1T 1 T 1T T 1)
I
Populated with values 0,
land?2

U
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Bayesian K2 Score TECNICO
LISBOA

How to detect which genes influence traits or diseases? ———» Bayesian K2 Score
Ko 1 1 1 High-Order Epistasis
' - Relates genetic markers that are most likely to
SNB SNR SNB  SNE  SNE ... SNR,, Class ) influence traits or diseases.
(R | | | ﬂ | | | | - Calculates score for a combination of K genetic
P | | | \| | | | | markers (order).
P, | | | | [ | | | | 1 - disease - Highest score corresponds to SNP combination that
Patients < P, | | [ [ ‘| | | | | ( 0-no disease is most likely to influence the trait or disease.
e T T T T T T T |
T T T 1T 7T T T 7
R T T T T T 1T T 1)

Populated with values 0,
1and 2

U
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Bayesian K2 Score TECNICO
LISBOA

How to detect which genes influence traits or diseases? ———» Bayesian K2 Score
k=3 1 1 1 High-Order Epistasis
- Relates genetic markers that are most likely to
SNB SNR SNB  SNE  SNE ... SNR,, Class ) influence traits or diseases.
(R | | | ﬂ | | | | - Calculates score for a combination of K genetic
P | | | \| | | | | markers (order).
P, | | | | [ | | | | 1 - disease - Highest score corresponds to SNP combination that
Patients < P, | | [ [ ‘| | | | | ( 0-no disease is most likely to influence the trait or disease.
e T T [ T T T T |
T T T 1T 7T T T 7
R T T T T T 1T T 1)
I
Populated with values 0,
land?2

Populate frequency table

01234567 891011121314151617181920212223242526

Class=o| | | [ [ [ | [TJ[JI IO J]TIT][]]]
Class=t[ | [ [ [ [J[LTITII I IIMTITITTITTT]

U
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Bayesian K2 Score TECNICO
LISBOA

How to detect which genes influence traits or diseases? ———» Bayesian K2 Score
k=3 1 1 1 High-Order Epistasis
- Relates genetic markers that are most likely to
SNB SNR SNB  SNE  SNE ... SNR,, Class ) influence traits or diseases.
(R | | | ﬂ | | | | - Calculates score for a combination of K genetic
P | | | \| | | | | markers (order).
P, | | | | [ | | | | 1 - disease - Highest score corresponds to SNP combination that
Patients < P, | | [ [ ‘| | | | | ( 0-no disease is most likely to influence the trait or disease.
e T T [ T T T T |
T T T 1T 7T T T 7
R T T T T T 1T T 1)
I
Populated with values 0,
land?2

Populate frequency table

#Columns = 3k

01234567 891011121314151617 181920 212223242526

Class=o | | [ [ [ | [T ][ ]I 1[I ][I IT][]]]
Class=t[ | [ [ [ [J[LTITIIP TV TIIITTIITTT]

U
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Bayesian K2 Score TECNICO
LISBOA

How to detect which genes influence traits or diseases? ———» Bayesian K2 Score
k=3 1 1 1 High-Order Epistasis
- Relates genetic markers that are most likely to
SNB SNR SNB  SNE  SNE ... SNR,, Class ) influence traits or diseases.
(R | | | ﬂ | | | | - Calculates score for a combination of K genetic
P | | | \| | | | | markers (order).
P, | | | | [ | | | | 1 - disease - Highest score corresponds to SNP combination that
Patients < P, | | [ [ ‘| | | | | ( 0-no disease is most likely to influence the trait or disease.
e T T [ T T T T |
T T T 1T 7T T T 7
R T T T T T 1T T 1)
I
Populated with values 0,
land?2

Populate frequency table

#Columns = 3k

01234567 891011121314151617 181920 212223242526

Class=o | | [ [ [ | [T ][ ]I 1[I ][I IT][]]]
Class=t| | [ [ [ [J[TITJIPTIMTITIITITTT]

U

~

K2 Calculation
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Bayesian K2 Score TECNICO
LISBOA

How to detect which genes influence traits or diseases? ————>» Bayesian K2 Score
k=3 1 1 1 High-Order Epistasis
' \ - Relates genetic markers that are most likely to
SNFO’ SNP1 SNFE’ SNFa’ SNP4 ........... SNE‘M Class |nf|uence tralts or dlseases
(R | | | ﬂ | | | | - Calculates score for a combination of K genetic
P | | | \| | | | | markers (order).
P, | | | | [ | | | | 1 - disease - Highest score corresponds to SNP combination that
Patients< P, | | [ [ ‘| | | | | ( 0-no disease is most likely to influence the trait or disease.
e 1T [ [ T T T T ]
1 [ 1 [ [ [ |
R T T T T T T T 1)
N— —
Populated with values 0,
land 2
Populate frequency table
k v
#Columns =3
01234567 891011121314151617181920212223242526 K2 Score:
Cass=o| [ [ | [ [ [ [ [ [ T[] [[xI[[[[][]][]] e & L _
clss =1 (T T L[ L[ LI [ T[T} K2= ) log ()+ ) log () + ) log )
~ —~— —~ j=1 J=1 j=1

K2 Calculation

U
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Bayesian K2 Score

How to detect which genes influence traits or diseases? ————>»

-

SNR SNP SNB  SNB  SNB ... SNR,

0

|

|

| 1 - disease
| { 0—no disease
|

|

|

Patients < P

Populated with values 0,
1and 2

Populate frequency table

#Columns = 3k

TECNICO
LISBOA

Bayesian K2 Score
High-Order Epistasis

Relates genetic markers that are most likely to
influence traits or diseases.

Calculates score for a combination of K genetic
markers (order).

Highest score corresponds to SNP combination that
is most likely to influence the trait or disease.

0 1/2]0/1][2]0 1]2]0[1/2]0 1]2]0[1]2]0][1]2]0[ 1 2|0[1]2

01234567 891011121314151617 181920 212223242526

Class=o | | [ [ [ | [T ][ ]I 1[I ][I IT][]]]
Class=t| | [ [ [ [J[TITJIPTIMTITIITITTT]

~

K2 Score:
X+Y+1 X Y
K2 = Z log (j) + ng(,)+ ZIog(])
j=1 J=1 j=1

K2 Calculation

U
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Bayesian K2 Score

How to detect which genes influence traits or diseases? ————>»

-

SNE SNP  SNR  SNB  SNB ... SNR,, Class )
(R T T T T [ T T ]
Rl | I | [ |
P, | | | | ﬂ | | | | \ 1-disease
Patients < P, | [ | [ [ [ [ [ | [ 0—no disease
e 1T T T T T T 7
1T T T T T ] -
R T T T T T T T 1)
N— —
I
Populated with values 0, N
land?2

TECNICO
LISBOA

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to
influence traits or diseases.

- Calculates score for a combination of K genetic
markers (order).

- Highest score corresponds to SNP combination that
is most likely to influence the trait or disease.

0 1 2 0 1 2 0 1 2

sNP, (o[ 1]2]0]1][2][0]1]2]0[ 1 2[0 1]2]0][1]2]0[1]2[0]1][2]0[1 2

Index Calculation:

Populate frequency table IDX = (1)x3
v
#Columns = 3k
01234567 891011121314151617 1819202122 23242526 K2 Score:
Cass=o | | [ [ [ [ [ [ [[[ T [[[TT[][[]] e Y
Coss=1| | [ [ [ [ [T I LTI T [P TTT]] Kz:zlog(l)szl"g(’Hzl"g(l)
~~ ~— — j=1 J=1 j=1

K2 Calculation

U
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Bayesian K2 Score

How to detect which genes influence traits or diseases? ————>»

-

SNE SNP  SNR  SNB  SNB ... SNR,, Class )
(R T T T T [ T T ]
Rl | I | [ |
P, | | | | ﬂ | | | | \ 1-disease
Patients < P, | [ | [ [ [ [ [ | [ 0—no disease
e 1T T T T T T 7
1T T T T T ] -
R T T T T T T T 1)
N— —
I
Populated with values 0, N
land?2

Populate frequency table

#Columns = 3k

TECNICO
LISBOA

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to
influence traits or diseases.

- Calculates score for a combination of K genetic
markers (order).

- Highest score corresponds to SNP combination that
is most likely to influence the trait or disease.

0 1 2 0 1 0 1 2

sNP, (o[ 1]2]0]1][2][0]1]2]0[ 1 2[0 1]2]0[1]2]0[1]2]0]1][2]0[1 2

Index Calculation:
IDX = (((1)x3)+2)x3

01234567 891011121314151617 181920 212223242526

Class=o | | [ [ [ | [T ][ ]I 1[I ][I IT][]]]
Class=t| | [ [ [ [J[TITJIPTIMTITIITITTT]

~

K2 Score:
X+Y+1 X Y
K2 = Z log (j) + ng(,)+ ZIog(])
j=1 J=1 j=1

K2 Calculation

U
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Bayesian K2 Score

How to detect which genes influence traits or diseases? ————>»

-

SNE SNP  SNR  SNB  SNB ... SNR,, Class )
(R T T T T [ T T ]
Rl | I | [ |
P, | | | | ﬂ | | | | \ 1-disease
Patients < P, | [ | [ [ [ [ [ | [ 0—no disease
e 1T T T T T T 7
1T T T T T ] -
R T T T T T T T 1)
N— —
I
Populated with values 0, L a\e
land?2

Populate frequency table

#Columns = 3k

TECNICO
LISBOA

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to
influence traits or diseases.

- Calculates score for a combination of K genetic
markers (order).

- Highest score corresponds to SNP combination that
is most likely to influence the trait or disease.

0 1 2 0 1 0 1 2

sNp, (o[ 1]2]0]1][2[0]1]2]0[ 1 2[0 1][2]0/1]2]0[1]2[0]1][2]0[1 2

Index Calculation:
IDX = (((1)x3+2)x3+0)

01234567 891011121314151617 181920 212223242526

Class=o | | [ [ [ | [T ][ ]I 1[I ][I IT][]]]
Class=t| | [ [ [ [J[TITJIPTIMTITIITITTT]

~

K2 Score:
X+Y+1 X Y
K2 = Z log (j) + ng(,)+ ZIog(])
j=1 J=1 j=1

K2 Calculation

U

9/10/2019  9/10/2019

63 63




Bayesian K2 Score e TECNICO
- ines LISBOA

Original Implementation
Intel Advisor CARM

for(1=0;1<SNPdata.samplesize;1++) {

index = 0;

@ cont = 1;

16 Jg forlj=0;j<k;j++) {

o <2° 1f(SNPdata.datal1] [selectedSNPSet[j]] == 3) {

b a cont = 0;

o 2C

o> break;
A }
L g
A 2 Integer Scalar Add Peak 5 47 GINTOPS else 7
index = index + SNPdata.datalillselectedSNPSet[j]]*(int)pow(3.0,(k-1-7));
1
1f(cont) {
observedValues[SNPdata.datal1][SNPdata.data_col-1]1]1[1ndex]++;
colsumTable[index]++;
H
¥
Loop in Bayesian_score at main.cpp:35
82.985s
0.1 Scalar Total time
INT OP/Byte (Arithmetic Intensit;
L —ru—
0.016 2.33 13.166s
Self time

® Static Instruction Mix Summary®

B ayes i a.n K 2 SC O re ¥ Dynamic Instruction Mix Summary®

. - . ¥ Memory 68% (49950000000, 25)
o * Scalar 68% (49950000000, 25) N
ngh Order EpIStaSIS ¥ Compute 11% (7992000000, 4)
* Scalar  11% (7992000000, 4) @
Other 21% (15984000000, 8) B

- 1 main hotspot cPU Total Time
4.15339e-08s | 0.00017s

Per Iteration | Per Instance

Intel Advisor CARM:
- Loops is bound by both (mem and comp)
- Loop 1: Mainly limited by L3

Completely dominated by Scalar instructions
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Bayesian K2 Score TECNICO
LISBOA

Original Implementation
Intel Advisor CARM

16 /2

SdOINI

T INT ADD Scalar

Performance [GINTOPS/s]
N
[=]

2‘1 Memory Traffic* Memory Impact*
L1 88%
22 8% L2 1%
1% | L3 |1%

23 0% [DRAM |0%
2-4 1 1 1 | 1

26 24 22 20 22

0.11 |

0.016 - INTOP/Byte (rthmeic Inersity) Arithmetic Intensity [intop/byte]

Bayesian K2 Score

High-Order Epistasis

- 1 main hotspot

Intel Advisor CARM:

- Loop is bound by both (mem and comp)
- Mainly limited by L3 Derived Optimizations:

 Utilization of 8-bit integers to reduce memory footprint
» Vectorization
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Bayesian K2 Score TECNICO

SNE SNE  SNB  SNB  SNB ... SNP,, Class

I
I
I
I
I
I
I
Data is transposed to l
perform vectorization

Py Pes Por Pz ) Puss Prat
SNR | | | | |
SNF | | | | |
SN | | | | |

64 indexes calculated in parallel

Derived Optimizations:
 Utilization of 8-bit integers to reduce memory footprint
* Vectorization
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Bayesian K2 Score TECNICO

Optimized Version — Single-Thread

. SNP  SNP  SNP SNP SNP  ........... SNP . Class
Intel Advisor CARM 5 i 2 e

100 _|

SdOLINID

Int32 Vector Add Peak: 73,17 GINTOPS |

[ |
[ [
L[|
L[|
| [ |
[ |
I

Integer ScalarAdd Peak: 5.46 GINTOPS PN

|
|
|
|
|
|
|
Data is transposed to l
perform vectorization

o | P Pea Por Pz ) Puss Prs
I 11 [ SNP | | | | |
SNP | | | | |
Bayesian K2 Score SNP | | | | |
High-Order Epistasis I

- 1 main hotspot _ _
64 indexes calculated in parallel

Intel Advisor CARM:

- Loop is Bound by memory . o i
- Between L2 and L3 Derived Optimizations:

 Utilization of 8-bit integers to reduce memory footprint
* Vectorization
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Bayesian K2 Score TECNICO
LISBOA

Optimized Version — Single-Thread
Intel Advisor CARM

100 _|

SdOLINID

Int32 Vector Add Peak: 73,17 GINTOPS

bound by memory — L2 Bound
8-bit INT AVX512

.t e
-

N
=)

Integer ScalarAdd Peak: 5.46 GINTOPS

[+ vl
B =24

L)
n

Memory Impact*
L1 22%

hv]
=}

N
N
=
A\
\
\

- 0% DRAM 0%

Performance [GINTOPS/s]

N
IS

- *abtained from Advisor Simulation Tool

1 L 1 | 1 J
INTOP/Byte (Arithmetic Intensity )
] o = i 26 24 22 20 22 2 26

Arithmetic Intensity [intop/byte]

Bayesian K2 Score
High-Order Epistasis

- 1 main hotspot

Intel Advisor CARM:

- Loop is Bound by memory . o i
- Between L2 and L3 Derived Optimizations:

 Utilization of 8-bit integers to reduce memory footprint
* Vectorization
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Bayesian K2 Score TECNICO
LISBOA

Optimized Version — 18 Threads
Intel Advisor CARM

e Int32 Vector Add Peak: 1314.41 GINTOPS
1000 12
o
o
1]
1004 12 bound by memory — L3 Bound 8-bit INT ADD AVX512
2 R -
10 S -
w2 R s
@ sl 7 e Phe
10 ] g2 o7 e
-
E 6 -
Z 2 QT e
(O] 4 \_’.--" - 1_4" Memory Traffic* Memory Impact*
2 2N T T 7 7e I - 29%
1 g7 g P
S o2 L. e 1w | L2 29%
3 0 e o [l 2 42%
g 2 - .’_.{!\/.,Cv 0% DRAM | 0%
04 e 22| ’__,.-69}* obtsiosd frm Advisor Simulaton Too
e
INTOP/Byte (Arithmetic Intensity) ot I 1 L 1 L L j
0.01 o™ 1 10

| |
26 o4 o2 20 22 ot 26 28 710
Arithmetic Intensity [intop/byte]

Bayesian K2 Score
High-Order Epistasis

- 1 main hotspot

Intel Advisor CARM:
- Loop is Bound by memory
- Between L3 and DRAM (closer to L3)
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Bayesian K2 Score

Optimized Version — 18 Threads
Intel Advisor CARM

1000 |

SdOINID

100 |

Int32 Vector Add Peak 1314.41 GINTOPS

bound by memory — L3 Bound

TECNICO
LISBOA

12 8-bit INT ADD AVX512
2 o
‘ﬁ? e
10 ] n
= ,
z 2 e
[0] et - - Memory Traffic Memory Impact*
Al 7 e . 29%
14 2 2 .»".‘. 1 - 1% | L2 29%
@ 2° B Pl
£ 0 ’6,-‘ o [l L3 42%
2" - P 0% DRAM | 0%
o 2l PRt s o s ssn
- INTOP/?v(e (Arithmetic Intensity ) 2'4 i | 1 | 1 1 1 | |
0.01 0.1 1 10 2-6 2-4 2—2 20 22 24 26 28 21 0
Arithmetic Intensity [intop/byte]
Bayesian K2 Score Speedups:
High-Order Epistasis
. Input Set Optlmlzed — | Optimized —
- 1 main hotspot 18T
23.71 46.54
Intel Advisor CARM: 1000s,
- Loop is Bound by memory 4000p 3 56.6 959.08
- Between L3 and DRAM (closer to L3)

9/10/2019
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EUROPEAN
PROCESSOR
INITIATIVE

FRAMEWORK PARTNERSHIP AGREEMENT IN EUROPEAN
LOW-POWER MICROPROCESSOR TECHNOLOGIES

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S HORIZON 2020 RESEARCH AND INNOVATION
PROGRAMME UNDER GRANT AGREEMENT NO 826647

COPYRIGHT EUROPEAN PROCESSOR INITIATIVE 2019 9/10/2019 72



How EuroHPC will help to make us TECNICO
stronger LISBOA

- Developing a new European o
supercomputing ecosystem: HPC C* *
systems, network, software, — %
applications, access through the -
cloud

- Making HPC resources available
to public and private users,
including SMEs.

- Stimulating a technology supply
industry

EuroHPC

ecoPVYRIEHTFFHRAOPFAN-PROCECSCAR INUTIATIVE O
W CUFTRTOITT COUNUT CAIN T NOCEoSOUT T TINT 7 v e 4019
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EPI: VISION e TECNICO
- ines LISBOA

- High Performance Computing needs for Exascale \ I /
machines beyond 2022 B A

«  Connected mobility & Autonomous Driving computing
needs beyond 2023 — —

*  Low power CPU needs for Servers and Cloud

«  Other markets under exploration (Server and Cloud)

ecoPVYRIEHTFFHROPFAN-PROCECCAD INUTIATIV/E 9N1Q
CUFTRTOTT CTUONUT CAIN T NOCEooUT T TINT T hvE 20T



European Processor Initiative e W TECNICO
- ines LISBOA

* High Performance General Purpose Processor for HPC
- High-performance RISC-V based accelerator
« Computing platform for autonomous cars

- Will also target the Al, Big Data and other markets in order to be
economically sustainable

U
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GPP and common architecture = W IFS%\IOIgO
(“)qiisboa

A D2D links
. V' to adjacent chiplets

HBM
memorie
s

D -
A4 )

DDR
memorie
s
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EPAC — RISC-V Accelerator o) '[F%\Id%ﬂ

m  EPAC - EPI Accelerator

= VPU - Vector Processing
Unit

VPU I .
o m  STX - Stencil/Tensor

accelerator
A 1

= VRP - VaRiable Precision
CO-processor

; 77 9/10/2019 Copyright European Processor Initiative 2019 9/10/2019 77



EPI PARTNERS TECNICO
ines LISBOA

BMW Rolls Ro ce i’f-.— g:;‘;i:;r:l’"fiﬂg
Group O =@~ s ntineon

€y xaLray 9) JULICH Eemidynamics [ TEX5° 22 Fraunhofer

Forschungszentrum " ) - )
silicon design and verification services

gl
T
A5k CINECA
o\ &
"J.‘_ : 343 ' — —
MmwmsTUDOwM oVl s NTVERSITA DI PISA == COMPUTER

Elas~ wceEnct @FORTH  Lyy €xrouo

ETH ziirich
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Intel Research Grant e W '[F%\I{JI%O
. Boa

- Boosting the roofline-based optimization \
guidance and performance modeling for lntel
modern CPU systems

- Started in 2018 and extended for 2019

Performance (GFLOPS)

64.12 - P Ig_‘ut. DP Vector FMA Peak (single-threaded): 64.12 C‘FLOPSZ
’ 12 SP VectorAdd Peak (single-threaded): 64.11 GFLOPS
- 1 - .

- . . } 2
"? o BF Vector Add Peak iaingie-threaded]: 16 GFLOPS’

3 . ?
ggalar'AgdPeak (single-threaded): 8.01 GFLOPS

y!
32 4 f
0% 3 Al
& °© fe) 2
e .
et
\cj .4 <
(=

v

0.36 o

4.06
Arithmetic Intensity (FLOP/Byte)

nnnnnnnnnnnnnnnnnnnnnnnnnnnnn
W COPYRIGHTEUROPEAN-PROCESSORHNHHATVE 2019
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Conclusions TECNICO
ines LISBOA

SEVERAL CACHE-AWARE ROOFLINE MODELS (EXPERIMENTALLY

VERIFIED)
— For several domains: performance, power and energy

APPLICATION-DRIVEN CARM

— Not only considers different micro-architectures (GPU and NUMA) but also
considers application requirements: ISA extensions, load/store ratio

— New visual aids for improved characterization: memory traffic and performance
impact metrics

— Improved characterization of 3 applications representative of real-world
scenarios: 1ISO-3DFD, SWA4Lite and Bayesean K2 score

ON-GOING (FUNDED) PROJECTS
— EPIl and Intel: show the practical interest of the work

FUTURE WORK

- INCLUDE ADDITIONAL INFORMATION IN APPLICATION DRIVEN CARM (INTEGERS,
CONVERSIONS...)
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Questions?

Thank you!

Further readings:

A. llic, F. Pratas, and L. Sousa, “Beyond the Roofline: Cache-aware Power and Energy-Efficiency
Modeling for Multi-cores”, IEEE Transactions on Computers (2017)

A. llic, F. Pratas, and L. Sousa, “Cache-aware Roofline model: Upgrading the loft”, IEEE Computer
Architecture Letters, CAL (2014)

D. Marques, H. Duarte, A. llic, L. Sousa, R. Belenov, P. Thierry and Z. Matveev, “Performance Analysis
with Cache-Aware Roofline Model in Intel Advisor”, tutorial paper, HPCS (2017)

A. Lopes, F. Pratas, L. Sousa and A. llic, “Exploring GPU performance, power and energy-efficiency
bounds with CARM”, ISPASS (2017)

N. Denoyelle, B. Goglin, A. llic, E. Jeannot and L. Sousa, “Modeling Non-Uniform Memory Access on
Large Compute Nodes with the Cache-Aware Roofline Model”, IEEE TPDS (2018)

A. llic, F. Pratas, and L. Sousa, “CARM: Cache-Aware Performance, Power and Energy-Efficiency
Roofline Modeling”, Intel CATC (2015)

L. Tanica, A. llic, P. Tomas, and L. Sousa, “SchedMon: A Performance and Energy Monitoring Tool for
Modern Multi-cores”, MuCoCoS/Euro-Par (2014)




Cache-Aware Roofline Model TECNICO
LISBOA
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Application Characterization:
DRAM LISBOA

TECNICO

Cache-aware Roofline Model (CARM)? Classic DRAM Roofline Model?

AVX MAD (Fp)

|=16. AVX MAD (Fp)

Performance [Gflops/s]
Performance [Gflops/s]

API;-’-DRAIVII (OrigipaI/Ca(I:he-aw?re) Il | IAPP-DFIKAM Il

2—6 2-4 2—2 20 22 24 26 28 210 212 214 2—6 2-4 2—2 20 22 24 26 28 210 212 214
Arithmetic Intensity [flops/byte] Operational Intensity [flops/DRAMbyte]

DRAM Application
iterations: 1 2 3 B N iterations: 1 2

3 )
bytes: -:- -:- -:- -:- ' = DRAMbytes: -:- -_ .- -:-
] Load Data Compute |f Store Data )
operational f 2f 3f . Nf operational 1 i d 3f . il §
intensity: b 2b 3b Nbh [bytes] [flops] [bytes] intensity: b’ 2h’ 3b’ Nb’

Iterations

Cache-aware Roofline Model: Original Roofline Model:

D llic A., Pratas F., Sousa L., “Cache-aware Roofline Model: Upgrading the loft”, IEEE CAL (2014)
W 2 Williams S., et. al., “Roofline: An insightful visual performance model for multicore architectures”, Communications of the ACM (2009)
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Application Characterization:
L1 cache

Cache-aware Roofline Model (CARM)?

AVX MAD (Fp)

1=16
i

Performance [Gflops/s]

APP-L1 (Cache-aware)
API;-’-DRAIVII (OrigipaI/Ca(I:he-aw?re)

©

Performance [Gflops/s]

22 24 26 28
Arithmetic Intensity [flops/byte]

210 212

I 2-2
214

TECNICO
LISBOA

AVX MAD (Fp)

#lterations

APP-L1
IAPP-DFIKAM

Cache-aware Roofline Model:
iterations: 1 2 3
bvees: IECH NN IO O

operational f 2f 3f

intensity: [ b+b b+2b
. . .

Nf
b+(N-1)b

f/b (constant)

L1 Application

22

210 212 214

200 22 24 26 28
Operational Intensity [flops/DRAMbyte]

Load Data
[bytes]

Compute
[flops]

Iterations

Store Data
[bytes]

Original Roofline Model:

iterations: 1 2

prambytes: [JICEER

operational i
intensity: b’

3 "
2f

2z i
b!

hl
]

222 (shift right)

D llic A., Pratas F., Sousa L., “Cache-aware Roofline Model: Upgrading the loft”, IEEE CAL (2014)

W 2 Williams S., et. al., “Roofline: An insightful visual performance model for multicore architectures”, Communications of the ACM (2009)
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Performance [Gflops/s]

Application Characterization:

CARM and ORM

Cache-aware Roofline Model (CARM)?

|=ye.\ AVX MAD (Fp)

Performance tends to
the accessed ceiling

Al does not vary
(application property)

Maximum modeled
performance achievable

24 26 28 210 212
Arithmetic Intensity [flops/byte]

Performance [Gflops/s]

TECNICO
LISBOA

Classic DRAM Roofline Model?

=1 AVX MAD (Fp)

Fixed OI. unexpected
performance

< #lterations >

Ol varies with problem size.
Memory bound becomes compute bound.

(
@4 Modeled maximums not achievable
! ! | ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
2—6 2—4 2—2 20 22 24 26 28 210 212 214
Operational Intensity [flops/DRAMbyte]

Observations CACHE-AWARE ROOFLINE ORIGINAL ROOFLINE MODEL
(Paradoxes) MODEL (ORM)
(CARM)
MEMORY-BOUND
REGION: Achievable Not achievable
Modeled max. (in practice) (for architectures with caches)
performance
INTENSITY Constant Varies with the problem size
(no variation with the problem size) (shift from memory-bound to compute-bound)
CHARACTERIZATION: Consistent Multi-model
' consistent Hint: Optimize memory-bound APP-L1?
9/1(8%6T§at|on Hints (according to the test nature) APP-DRAM performs better than APP-L1 85




