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Motivation

– Energy-efficient architectures: Sprinting towards Exascale Systems
– Heterogeneity: compute and memory capability, specialization (CPU, GPU, big.LITTLE, FPGA)

– Performance, power, energy and efficiency trade-offs

– Application design: Exploiting architecture diversity to reach efficiency
– Different computational and memory requirements

– Painful optimization and characterization (for each architecture)

– How far can we go: Performance, Power, Energy and Efficiency Maximums?
– In a simple, insightful and fast way (allowing the first-order analysis)

THIS IS ALL ABOUT BUILDING THE ROOFS
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Outline

RECAP: ORIGINAL ROOFLINE MODEL*

CACHE-AWARE ROOFLINE MODEL

- PERFORMANCE

- EXTENSIONS: POWER AND ENERGY-EFFICIENCY

APPLICATION CHARACTERIZATION WITH CACHE-AWARE ROOFLINE MODEL

- APPLICATION-DRIVEN CARM

- ISO3DFD CASE STUDY

- PROXY-APPLICATIONS FROM EXASCALE COMPUTING PROJECT

- BAYESIAN K2 SCORE

ON-GOING (FUNDED) PROJECTS

* Williams S., et. al., “Roofline: An insightful visual performance model for multicore architectures”, CACM (2009)
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Multi-cores and the

Roofline Model

– General-purpose processors with complex memory hierarchy

– Multiple cores with powerful out-of-order engines 

– Several levels of memory hierarchy: private/shared caches + deeper (and diverse) memory levels 

– OBSERVATION: Computations and communication (data transfers) simultaneously performed

– The overall execution time can be limited either by the time to compute or by the time taken to transfer data

– Different Roofline Models observe memory traffic differently!
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DRAM Roofline Model

DRAM ORM

Flops/DRAMbytes

– DRAM ORM: DRAM-based Original Roofline Model

– Memory traffic: bytes between DRAM and LLC

– Memory Bandwidth: DRAM to LLC, i.e., DRAM bandwidth

– Compute performance: Flops delivered by the core(s)

– Intensity (x-axis): Flops/DRAMBytes
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Original Roofline Model

DRAM ORM

L3 ORM

Flops/DRAMbytes

Flops/L3bytes
– L3 ORM: L3-based Original Roofline Model

– Memory traffic: bytes between LLC and L2

– Memory Bandwidth: LLC to L2, i.e., L3 bandwidth

– Compute performance: Flops delivered by the core(s)

– Intensity (x-axis): Flops/L3Bytes
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L1 ORM

Flops/L1bytes

Original Roofline Model

DRAM ORM

Flops/DRAMbytes

L3 ORM

Flops/L3bytes

L2 ORM

Flops/L2bytes

Flops/Xbytes

Hierarchical ORM

– Lx ORM: Lx-based Original Roofline Model

– Memory traffic: bytes between two subsequent memory levels

– Memory Bandwidth: Lx bandwidth

– Compute performance: Flops delivered by the core(s)

– Intensity (x-axis): Flops/LxBytes
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Hierarchical ORM

Arithmetic Intensity (Flop/Xbyte)

Hierarchical ORM
(4 ORMs in one chart)

Bandwidth between memory levels

– Hierarchical ORM: Several Lx-based Original Roofline Models in a single plot 

– Memory Bandwidth: Lx bandwidth (for each ORM)

– Compute performance: Flops delivered by the core(s)

– Intensity (x-axis): Flops/LxBytes
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Hierarchical ORM

Arithmetic Intensity (Flop/Xbyte)

Hierarchical ORM
(4 ORMs in one chart)

Single Application: 4 points 
(one for each ORM)

Bandwidth between memory levels

– Hierarchical ORM: Several Lx-based Original Roofline Models in a single plot 

– Memory Bandwidth: Lx bandwidth (for each ORM)

– Compute performance: Flops delivered by the core(s)

– Intensity (x-axis): Flops/LxBytes

– Application characterization: As many points as memory levels (one for each ORM)
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Outline

RECAP: ORIGINAL ROOFLINE MODEL*

CACHE-AWARE ROOFLINE MODEL

- PERFORMANCE*

- EXTENSIONS: POWER AND ENERGY-EFFICIENCY

APPLICATION CHARACTERIZATION WITH CACHE-AWARE ROOFLINE MODEL

- APPLICATION-DRIVEN CARM

- ISO3DFD CASE STUDY

- PROXY-APPLICATIONS FROM EXASCALE COMPUTING PROJECT

- BAYESIAN K2 SCORE

ON-GOING (FUNDED) PROJECTS

*A. Ilic, F. Pratas and L. Sousa “Cache-ware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters (2014)
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Cache-aware Roofline Model (CARM)

– CARM: visual representation of the limits of parallel processing on contemporary multi-cores 

– Considers memory traffic and computation from the consistent architecture point of view (cores)

– Relates the peak compute performance and realistically achievable bandwidth with Arithmetic Intensity (AI)

– Unifies the complete memory hierarchy in a single plot model 

– CONSTRUCTION: How to obtain these bandwidth values? (only BL1->C directly derivable from data sheets)

* Ilic A., Pratas F., Sousa L., “Cache-aware Roofline Model: Upgrading the loft”, IEEE CAL (2014)
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Developed Tools: 

Methodology and micro-benchmarks

– CARM-oriented tools: construction, validation and application characterization
– SchedMon1): Software tool for near-OS counter-based monitoring (multiplexing and shed events)

– LARM2): CARM bandwidth and FP performance micro-benchmarks (NUMA/KNL CARM)

– CARM validation tools and micro-benchmarks3)

1) Taniça L., et. al. “SchedMon: A Performance and Energy Monitoring Tool for Modern Multi-cores”, MuCoCoS/Euro-Par (2014)
2) Denoyelle N., et. al., “Modeling Large Compute Nodes with Heterogeneous Memories in CARM”, PMBS, SC (2017) and IEEE TPDS (2018)
3) Marques D., “Analyzing Performance of Multi-cores and Applications with Cache-aware Roofline Model”, HPBench, HPCS (2017)

// AVX Assembly: 2LD+1ST

vmovapd 0(%rax), %ymm0

vmovapd 32(%rax), %ymm1

vmovapd %ymm2, 64(%rax)

vmovapd 96(%rax), %ymm3

vmovapd 128(%rax), %ymm4

vmovapd %ymm5, 160(%rax)

…

// Configured Counters

CPU_CLK_UNHALTED.CORE/REF

MEM_UOP_RETIRED.ALL_LOADS

MEM_UOP_RETIRED.ALL_STORES

…
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Cache-aware Roofline Model

Intel 3770K

(Ivy Bridge)

4 Cores

(AVX MAD)

Arithmetic Intensity [flops/byte]

• Insightful single plot model
- Shows performance limits of multicores

- Redefined AI: flops and bytes as seen by core

- Constructed once per architecture

• Considers complete memory hierarchy
- Influence of caches and DRAM to performance

• Applicable to other types of operations 
- not only floating-point

• Useful for:
- Application characterization and optimization 

- Architecture development and understanding

* Ilic A., Pratas F., Sousa L., “Cache-aware Roofline Model: Upgrading the loft”, IEEE CAL (2014)

• Total Cache-aware Roofline Model

- Includes all transitional states (traversing the 

memory hierarchy and filling the pipeline)

- Single-plot modeling for different types of 

compute and memory operations



159/10/2019

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 0.015625  0.0625  0.25  1  4  16

P
e

rf
o

rm
a

n
c
e

 (
G

F
L
O

P
/s

)

Arithmetic Intensity (FLOP/Byte)

L1
Co

re
 B

an
dw

id
th

L2

Co
re

FMA (Peak Performance)

ADD/MUL (Peak Performance)

M

C

AI1 AI2

K

AI3

L3
Co

re

DRAM

Co
re

Cache-aware 

Roofline Model

Cache-aware Roofline Model:

Interpretation

• Optimization hints

- Memory: improve access pattern, use of caches

- Compute: vectorization, FMAs, parallelization

- Shady: all kinds of everything (mem+comp)

• Performance analysis with CARM
- Application (kernel) is a single “dot”

- In respect to their AI and FP Performance

• Draw an imaginary vertical line at app AI
- Arithmetic intensity: Property of the application

- Should not change (unless the algorithm changes)

• Intersected roofs: potential bottlenecks
- Priority to the roofs above

- Roofs below are also important!

• Optimization: “Break the above roofs”

- Optimizations should improve the performance

- Points move up in the CARM plot

* Marques D., et. al., “Performance Analysis with Cache-Aware Roofline Model in Intel Advisor”, HPCS (2017)
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Cache-aware Roofline Model in

Intel Advisor

Advisor Cache-aware Roofline 

- Automatic construction (from NHL to KBL-X)

- Break-down by application phases, loops and functions 

(hierarchical feature)

- In-depth application profiling and optimization hints

“incredibly useful diagnosis tool (that can guide the developers in the application optimization process),

ensuring that they can squeeze the maximum performance out of their code with minimal time and effort.”

• Performance analysis with CARM
- Applications (kernels) as single “dots”

- In respect to their AI and FP Performance

• Draw an imaginary vertical line at app AI
- Arithmetic intensity: Property of the application

- Should not change (unless the algorithm changes)

• Intersected roofs: potential bottlenecks
- Priority to the roofs above

- Roofs below are also important!

• Optimization: “Break the above roofs”

- Optimizations should improve the performance

- Points move up in the CARM plot
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Cache-aware Roofline Model:

Power Consumption

• Performance: Computations (flops) and communication (bytes) overlap in time

• Power consumption: Superposed contributions of flops and bytes

C
o
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s
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n

c
o

re

Package

Arithmetic Intensity [flops/byte]

Arithmetic Intensity [flops/byte]

Arithmetic Intensity [flops/byte]

* Ilic, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Cache-aware Power & Energy-Efficiency Modeling…”, IEEE Transactions on Computers (2016) 
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Arithmetic Intensity [flops/byte]Arithmetic Intensity [flops/byte]

Arithmetic Intensity [flops/byte]

Efficiency CARMs

Power-efficiency Energy

EDP-efficiency

Energy-efficiency

Arithmetic Intensity [flops/byte]
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Cache-aware Roofline Model: Use Cases

Application Characterization

Online Monitoring

* Ilic, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Cache-aware Power & Energy-Efficiency Modeling…”, IEEE Transactions on Computers (2017)   

* Antão, D., et.al.,“Monitoring Performance and Power for Application Characterization with CARM”, PPAM’13

Arithmetic Intensity [flops/byte] Arithmetic Intensity [flops/byte] Arithmetic Intensity [flops/byte]

Arithmetic Intensity [flops/byte] Arithmetic Intensity [flops/byte] Arithmetic Intensity [flops/byte]
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Cache-Aware Roofline Model:

Extensions

* Ilic A., et.al., “Beyond the Roofline: Cache-aware Power & Energy-Efficiency…”, IEEE Transactions on Computers (2017)

* Lopes A., et.al, “Exploring GPU performance, power and energy-efficiency bounds with CARM””, ISPASS (2017)

* Denoyelle N., et.al., “Modeling Non-Uniform Memory Access on Large Compute Nodes with the Cache-Aware Roofline Model”, IEEE 

Transactions on Parallel and Distributed Systema (2018)

CARM-based DVFS analysis

NUMA CARMGPU CARM
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Summary

SEVERAL CACHE-AWARE ROOFLINE MODELS (EXPERIMENTALLY

VERIFIED)
– (Total) Performance CARM

– (Total) Power CARM: for several domains, i.e., power of cores, uncore power and 

complete package power 

– Energy-Efficiency CARM: Performance + Power Domains

– Energy, Power-efficiency and EDP-based CARMs

– DVFS, GPU and NUMA CARMs

ON-GOING WORK

- CARM FOR ARM, FPGAS, COMPLETE SYSTEM …
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Outline

RECAP: ORIGINAL ROOFLINE MODEL*

CACHE-AWARE ROOFLINE MODEL

- PERFORMANCE*

- EXTENSIONS: POWER AND ENERGY-EFFICIENCY

APPLICATION CHARACTERIZATION WITH CACHE-AWARE ROOFLINE MODEL

- APPLICATION-DRIVEN CARM

- ISO3DFD CASE STUDY

- PROXY-APPLICATIONS FROM EXASCALE COMPUTING PROJECT

- BAYESIAN K2 SCORE

ON-GOING (FUNDED) PROJECTS

*A. Ilic, F. Pratas and L. Sousa “Cache-ware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters (2014)

Recently submitted publication
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Application-driven CARM

- Disjoint Roofline Methodologies
(Cache-aware, Classic ORM, Hierarchical, Integrated,…)

- May provide misleading optimization guidelines

- Inconclusive bottleneck detection 

- Large set of phases with diverse characteristics

- Different instruction mix, vectorization, SP/DP and 

LD/ST balance, FP share, memory access pattern…

- Maximums vary with utilization/execution scenario

- Components/subsystems differently exercised: 

ports, compute units, front-end, back-end, sockets …

- Memory subsystem: deep and diverse hierarchy, 

caches (private/shared), DRAM, NUMA, HBM…
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Application-driven CARM

compute requirements (AVX/SSE…)
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absolute architecture maximums
Application-driven Roofline

- Large set of phases with diverse characteristics

- Different instruction mix, vectorization, SP/DP and 

LD/ST balance, FP share, memory access pattern…

- Maximums vary with utilization/execution scenario

- Components/subsystems differently exercised: 

ports, compute units, front-end, back-end, sockets …

- Memory subsystem: deep and diverse hierarchy, 

caches (private/shared), DRAM, NUMA, HBM…

- Disjoint Roofline Methodologies
(Cache-aware, Classic ORM, Hierarchical, Integrated,…)

- May provide misleading optimization guidelines

- Inconclusive bottleneck detection 
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Application-driven CARM

AVX-512

AVX-512

Scalar

RESEARCH OBJECTIVES AND GOALS

State-of-the-art CARM

bound by both memory and compute?
(quite hard to optimize)
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Application-driven CARM

(SKL-X)

AVX-512 AVX2 SSE Scalar

AVX-512 AVX2 SSE Scalar DP Scalar SP

State-of-the-art CARM

bound by both memory and compute?
(quite hard to optimize)
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ISO-3DFD Case study

RESEARCH OBJECTIVES AND GOALS
– ISO-3DFD: 3D Finite Difference Code with an Isotropic 

– helps solving differential equations (seismic apps, wave propagation) 

https://software.intel.com/en-us/articles/eight-optimizations-for-3-dimensional-finite-

difference-3dfd-code-with-an-isotropic-iso

Experiments ran on Intel Xeon Gold 6140 

(18 cores @ 2.3GHz) 4x16GB DDR4

DISCLAIMER: Optimization courtesy of Cédric Andreolli (Intel Corporation)

3D stencil computation8th order stencil

https://software.intel.com/en-us/articles/eight-optimizations-for-3-dimensional-finite-difference-3dfd-code-with-an-isotropic-iso
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ISO-3DFD Case study

RESEARCH OBJECTIVES AND GOALS

Intel Advisor CARM
(product release version)

bound by both memory and compute?
(quite hard to optimize)
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Preliminary Outcomes:

ISO-3DFD Case study

RESEARCH OBJECTIVES AND GOALS

Intel Advisor CARM
(product release version)

bound by both memory and compute?
(quite hard to optimize)

Memory: L3 (DRAM?)

Compute: Scalar roof
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Preliminary Outcomes:

ISO-3DFD Case study

RESEARCH OBJECTIVES AND GOALS

Intel Advisor CARM
(product release version)

bound by both memory and compute?
(quite hard to optimize)

Memory: L3 (DRAM?)

Compute: Scalar roof

Integrated Roofline
(Advisor experimental feature)

L1 L2 L3 DRAM

multiple points for a single app
(one for each memory level, AIs displaced

wrt the traffic between the memory levels) 
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Preliminary Outcomes:

ISO-3DFD Case study

RESEARCH OBJECTIVES AND GOALS

Intel Advisor CARM
(product release version)

bound by both memory and compute?
(quite hard to optimize)

Memory: L3 (DRAM?)

Compute: Scalar roof

Integrated Roofline
(Advisor experimental feature)

L1 L2 L3 DRAM

Bottlenecks: Intersect respective rooflines
Point of minimum performance as bottleneck

(This app: Strictly compute bound) 
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Preliminary Outcomes:

ISO-3DFD Case study

RESEARCH OBJECTIVES AND GOALS

Intel Advisor CARM
(product release version)

bound by both memory and compute?
(quite hard to optimize)

Memory: L3 (DRAM?)

Compute: Scalar roof

Integrated Roofline
(Advisor experimental feature)

L1 L2 L3 DRAM

Bottlenecks: Intersect respective rooflines
Point of minimum performance as bottleneck

(This app: Strictly compute bound) 

Hierarchical Roofline
(state-of-the-art approach)

L1 L2 L3 DRAM

Similar to the Integrated Roofline
Bandwidth observed between memory levels

(This app: Strictly compute bound) 
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Preliminary Outcomes:

ISO-3DFD Case study

RESEARCH OBJECTIVES AND GOALS

Intel Advisor CARM
(product release version)

bound by both memory and compute?
(quite hard to optimize)

Memory: L3 (DRAM?)

Compute: Scalar roof

Integrated Roofline
(Advisor experimental feature)

L1 L2 L3 DRAM

Bottlenecks: Intersect respective rooflines
Point of minimum performance as bottleneck

(This app: Strictly compute bound) 

Hierarchical Roofline
(state-of-the-art approach)

L1 L2 L3 DRAM

Similar to the Integrated Roofline
Bandwidth observed between memory levels

(This app: Strictly compute bound) 

Absolute architecture maximums

(can my application exploit those?)
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Preliminary Outcomes:

ISO-3DFD Case study

RESEARCH OBJECTIVES AND GOALS

Intel Advisor CARM
(product release version)

bound by both memory and compute?
(quite hard to optimize)

Memory: L3 (DRAM?)

Compute: Scalar roof

Integrated Roofline
(Advisor experimental feature)

L1 L2 L3 DRAM

Bottlenecks: Intersect respective rooflines
Point of minimum performance as bottleneck

(This app: Strictly compute bound) 

Intel Advisor

Absolute architecture maximums

(can my application exploit those?)

Memory

Compute

Mixed

Others

34%

41%

7%

18%

Intel SDE Intel VTune Source-code 

analysis 

Micro-benchmarking 
(counters, assembly)

Retirement

38.5

Core

17.9

Memory

43.6

Ports

L1

L2

L3

DRAM

1.4%

0.4%

21.8%

0%

Vector Cap. Usage

FP Scalar

FP Vector

Other

59.5%

0%

40.5%

6.3%
Also decoupled by:

- operation type (e.g., LD/ST, ADD/MAD), 

- ISA extension (AVX512,AVX, SSE, Scalar), 

- data precision (single/double) …

upon which the respective ratios are derived
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Preliminary Outcomes:

ISO-3DFD Case study

RESEARCH OBJECTIVES AND GOALS

Intel Advisor CARM
(product release version)

bound by both memory and compute?
(quite hard to optimize)

Memory: L3 (DRAM?)

Compute: Scalar roof

Integrated Roofline
(Advisor experimental feature)

L1 L2 L3 DRAM

Bottlenecks: Intersect respective rooflines
Point of minimum performance as bottleneck

(This app: Strictly compute bound) 

PROPOSED

Application-driven Rooflines
(precise architecture modeling) 

Preserved model simplicity
(intuitiveness, remove clutter) 



369/10/2019

Preliminary Outcomes:

ISO-3DFD Case study

RESEARCH OBJECTIVES AND GOALS

Intel Advisor CARM
(product release version)

bound by both memory and compute?
(quite hard to optimize)

Memory: L3 (DRAM?)

Compute: Scalar roof

Integrated Roofline
(Advisor experimental feature)

L1 L2 L3 DRAM

Bottlenecks: Intersect respective rooflines
Point of minimum performance as bottleneck

(This app: Strictly compute bound) 

PROPOSED

Application-driven Rooflines
(precise architecture modeling) 

Improved bottleneck detection
(model resembles app demands) 

Preserved model simplicity
(intuitiveness, remove clutter) 

memory bound
(focused optimization)
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Preliminary Outcomes:

ISO-3DFD Case study

RESEARCH OBJECTIVES AND GOALS

Intel Advisor CARM
(product release version)

bound by both memory and compute?
(quite hard to optimize)

Memory: L3 (DRAM?)

Compute: Scalar roof

Integrated Roofline
(Advisor experimental feature)

L1 L2 L3 DRAM

Bottlenecks: Intersect respective rooflines
Point of minimum performance as bottleneck

(This app: Strictly compute bound) 

PROPOSED

Application-driven Rooflines
(precise architecture modeling) 

Improved bottleneck detection
(model resembles app demands) 

Preserved model simplicity
(intuitiveness, remove clutter) 

memory bound
(focused optimization)

Retirement

38.5

Core

17.9

Memory

43.6

Ports

L1

L2

L3

DRAM

1.4%

0.4%

21.8%

0%

Vector Cap. Usage

FP Scalar

FP Vector

Other

59.5%

0%

40.5%

6.3%

Quite optimized 3D stencil:
Data locality (caches) boosts the performance

DRAM prevents from reaching the maximums
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Preliminary Outcomes:

ISO-3DFD Case study

RESEARCH OBJECTIVES AND GOALS

Intel Advisor CARM
(product release version)

bound by both memory and compute?
(quite hard to optimize)

Memory: L3 (DRAM?)

Compute: Scalar roof

Integrated Roofline
(Advisor experimental feature)

L1 L2 L3 DRAM

Bottlenecks: Intersect respective rooflines
Point of minimum performance as bottleneck

(This app: Strictly compute bound) 

PROPOSED

Application-driven Rooflines
(precise architecture modeling) 

Improved bottleneck detection
(model resembles app demands) 

Preserved model simplicity
(intuitiveness, remove clutter) 

Memory traffic shares
(leverage other Advisor data) 

memory bound
(focused optimization)

L1

L2

L3

DRAM

88%

0%

7%

5%

97%

0%

1%

3%

Memory Traffic* Performance Impact*

* obtained from cache simulation

Performance impact
(pinpointing the bottlenecks)

Quite optimized 3D stencil:
Data locality (caches) boosts the performance

DRAM prevents from reaching the maximums
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Preliminary Outcomes:

ISO-3DFD Case study

RESEARCH OBJECTIVES AND GOALS

Intel Advisor CARM
(product release version)

bound by both memory and compute?
(quite hard to optimize)

Memory: L3 (DRAM?)

Compute: Scalar roof

Integrated Roofline
(Advisor experimental feature)

L1 L2 L3 DRAM

Bottlenecks: Intersect respective rooflines
Point of minimum performance as bottleneck

(This app: Strictly compute bound) 

PROPOSED

Application-driven Rooflines
(precise architecture modeling) 

Improved bottleneck detection
(model resembles app demands) 

Preserved model simplicity
(intuitiveness, remove clutter) 

Memory traffic shares
(leverage other Advisor data) 

memory bound
(focused optimization)

Performance impact
(pinpointing the bottlenecks)

New set of visual aids
(to drive optimization) 

Consistent characterization
(eases code vectorization) 

L1

L2

L3

DRAM

88%

0%

7%

5%

97%

0%

1%

3%

Memory Traffic* Performance Impact*

* obtained from cache simulation
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Preliminary Outcomes:

ISO-3DFD Case study

RESEARCH OBJECTIVES AND GOALS

Intel Advisor CARM
(product release version)

memory bound
(just before the ridge)

L1

L2

L3

DRAM

88%

0%

7%

5%

97%

0%

1%

3%

Memory Traffic* Performance Impact*

* obtained from cache simulation

Intel Advisor CARM
(product release version)

bound by both memory and compute?
(moves towards memory bound)

memory bound
(no significant changes in characterization)

L1

L2

L3

DRAM

4%

1%

84%

10%

42%

1%

10%

47%

Memory Traffic* Performance Impact*

* obtained from cache simulation

bound by both memory and compute?
(fundamentally compute with memory roofs)

PROPOSEDPROPOSED
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Proxy-applications from Exascale

Computing Project 

Intel Advisor CARM
(product release version)

sw4lite (LLNL, US)
Proxy version of SW4 (3-D seismic modeling)

- Again bunch of stencils ….

- 6 main hotspots (loops)

Intel Advisor CARM:

- All loops are bound by both (mem and comp)

- Loops 1 and 2: Mainly limited by L3

- Loop 3: Between DRAM and L3 (some locality)

- Loops 4, 5 and 6: DRAM bound
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Proxy-applications from Exascale

Computing Project 

Intel Advisor CARM
(product release version)

L1

L2

L3

DRAM

9%

0%

88%

3%

77%

0%

8%

15%

Memory Traffic* Performance Impact*

* obtained from cache simulation

L1

L2

L3

DRAM

20%

5%

58%

17%

75%

2%

2%

21%

Memory Traffic* Performance Impact*

* obtained from cache simulation

L1

L2

L3

DRAM

1%

0%

97%

2%

27%

0%

40%

33%

Memory Traffic* Performance Impact*

* obtained from cache simulation

sw4lite (LLNL, US)
Proxy version of SW4 (3-D seismic modeling)

- Again bunch of stencils ….

- 6 main hotspots (loops)

Improved interpretation methodology in action:

- Memory traffic shares: Additional performance 

insights (explains the dot position)

- Performance impact: Improved optimization hints 

(decouples the bottlenecks by their importance)
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Proxy-applications from Exascale

Computing Project 

Intel Advisor CARM
(product release version)

L1

L2

L3

DRAM

13%

0%

87%

0%

88%

0%

12%

0%

Memory Traffic* Performance Impact*

* obtained from cache simulation

L1

L2

L3

DRAM

13%

0%

87%

0%

87%

0%

12%

0%

Memory Traffic* Performance Impact*

* obtained from cache simulation

L1

L2

L3

DRAM

0%

0%

100%

0%

0%

0%

100%

0%

Memory Traffic* Performance Impact*

* obtained from cache simulation

sw4lite (LLNL, US)
bare bone version of SW4 (3-D seismic 

modeling)
- Again bunch of stencils ….

- 6 main hotspots (loops)

Improved interpretation methodology in action:

- Memory traffic shares: Additional performance 

insights (explains the dot position)

- Performance impact: Improved optimization hints 

(decouples the bottlenecks by their importance)

strictly memory-bound

strictly memory-bound
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Proxy-applications from Exascale

Computing Project 

Intel Advisor CARM
(product release version)

L1

L2

L3

DRAM

49%

0%

51%

0%

97%

0%

2%

1%

Memory Traffic* Performance Impact*

* obtained from cache simulation

ExaMiniMD (SNL)
Molecular Dynamics

- 2 main hotspots (loops)

- Loop 1 (memory bound), Loop 2 (comp/mem)

Improved interpretation methodology in action:

- Memory traffic shares: Additional performance 

insights (explains the dot position)

- Performance impact: Improved optimization hints 

(decouples the bottlenecks by their importance)

L1

L2

L3

DRAM

82%

0%

18%

0%

98%

0%

1%

0%

Memory Traffic* Performance Impact*

* obtained from cache simulation

strictly memory-bound

bound by both memory and compute
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Bayesian K2 Score
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How to detect which genes influence traits or diseases?  
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Bayesian K2 Score

9/10/2019 46

How to detect which genes influence traits or diseases?  Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to 

influence diseases. 

- Calculates score for a combination of K genetic 

markers (order).

- Highest score corresponds to SNP combination that 

is most likely to influence the trait or disease.
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How to detect which genes influence traits or diseases?  

Patients

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to 

influence traits or diseases. 

- Calculates score for a combination of K genetic 

markers (order).

- Highest score corresponds to SNP combination that 

is most likely to influence the trait or disease.

Bayesian K2 Score
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How to detect which genes influence traits or diseases?  

Patients

Genetic Markers

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to 

influence traits or diseases. 

- Calculates score for a combination of K genetic 

markers (order).

- Highest score corresponds to SNP combination that 

is most likely to influence the trait or disease.

Bayesian K2 Score
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How to detect which genes influence traits or diseases?  

Patients

Genetic Markers

Populated with values 0, 

1 and 2

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to 

influence traits or diseases. 

- Calculates score for a combination of K genetic 

markers (order).

- Highest score corresponds to SNP combination that 

is most likely to influence the trait or disease.

Bayesian K2 Score
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How to detect which genes influence traits or diseases?  

Patients

Genetic Markers

Populated with values 0, 

1 and 2

1 - disease 

0 – no disease

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to 

influence traits or diseases. 

- Calculates score for a combination of K genetic 

markers (order).

- Highest score corresponds to SNP combination that 

is most likely to influence the trait or disease.

Bayesian K2 Score
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How to detect which genes influence traits or diseases?  

Patients

Populated with values 0, 

1 and 2

1 - disease 

0 – no disease

K=3:

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to 

influence traits or diseases. 

- Calculates score for a combination of K genetic 

markers (order).

- Highest score corresponds to SNP combination that 

is most likely to influence the trait or disease.

Bayesian K2 Score
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How to detect which genes influence traits or diseases?  

Patients

Populated with values 0, 

1 and 2

1 - disease 

0 – no disease

K=3:

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to 

influence traits or diseases. 

- Calculates score for a combination of K genetic 

markers (order).

- Highest score corresponds to SNP combination that 

is most likely to influence the trait or disease.

Bayesian K2 Score
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How to detect which genes influence traits or diseases?  

Patients

Populated with values 0, 

1 and 2

1 - disease 

0 – no disease

K=3:

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to 

influence traits or diseases. 

- Calculates score for a combination of K genetic 

markers (order).

- Highest score corresponds to SNP combination that 

is most likely to influence the trait or disease.

Bayesian K2 Score
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How to detect which genes influence traits or diseases?  

Patients

Populated with values 0, 

1 and 2

1 - disease 

0 – no disease

K=3:

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to 

influence traits or diseases. 

- Calculates score for a combination of K genetic 

markers (order).

- Highest score corresponds to SNP combination that 

is most likely to influence the trait or disease.

Bayesian K2 Score
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How to detect which genes influence traits or diseases?  

Patients

Populated with values 0, 

1 and 2

1 - disease 

0 – no disease

K=3:

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to 

influence traits or diseases. 

- Calculates score for a combination of K genetic 

markers (order).

- Highest score corresponds to SNP combination that 

is most likely to influence the trait or disease.

Bayesian K2 Score
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How to detect which genes influence traits or diseases?  

Patients

Populated with values 0, 

1 and 2

1 - disease 

0 – no disease

K=3:

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to 

influence traits or diseases. 

- Calculates score for a combination of K genetic 

markers (order).

- Highest score corresponds to SNP combination that 

is most likely to influence the trait or disease.

Populate frequency table

Bayesian K2 Score
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How to detect which genes influence traits or diseases?  

Patients

Populated with values 0, 

1 and 2

1 - disease 

0 – no disease

K=3:

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to 

influence traits or diseases. 

- Calculates score for a combination of K genetic 

markers (order).

- Highest score corresponds to SNP combination that 

is most likely to influence the trait or disease.

Populate frequency table

#Columns = 𝟑𝒌

Bayesian K2 Score
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How to detect which genes influence traits or diseases?  

Patients

Populated with values 0, 

1 and 2

1 - disease 

0 – no disease

K=3:

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to 

influence traits or diseases. 

- Calculates score for a combination of K genetic 

markers (order).

- Highest score corresponds to SNP combination that 

is most likely to influence the trait or disease.

Populate frequency table

K2 Calculation

#Columns = 𝟑𝒌

Bayesian K2 Score
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How to detect which genes influence traits or diseases?  

Patients

Populated with values 0, 

1 and 2

1 - disease 

0 – no disease

K=3:

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to 

influence traits or diseases. 

- Calculates score for a combination of K genetic 

markers (order).

- Highest score corresponds to SNP combination that 

is most likely to influence the trait or disease.

Populate frequency table

#Columns = 𝟑𝒌

K2 Score:

𝑲𝟐 = ෍

𝒋=𝟏

𝑿+𝒀+𝟏

log (𝒋) + ෍

𝑱=𝟏

𝑿

𝒍𝒐𝒈 𝒋 + ෍

𝒋=𝟏

𝒀

𝒍𝒐𝒈 (𝒋)

Bayesian K2 Score

K2 Calculation
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How to detect which genes influence traits or diseases?  

Patients

Populated with values 0, 

1 and 2

1 - disease 

0 – no disease

K=3:

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to 

influence traits or diseases. 

- Calculates score for a combination of K genetic 

markers (order).

- Highest score corresponds to SNP combination that 

is most likely to influence the trait or disease.

Populate frequency table

#Columns = 𝟑𝒌

Bayesian K2 Score

K2 Calculation

K2 Score:

𝑲𝟐 = ෍

𝒋=𝟏

𝑿+𝒀+𝟏

log (𝒋) + ෍

𝑱=𝟏

𝑿

𝒍𝒐𝒈 𝒋 + ෍

𝒋=𝟏

𝒀

𝒍𝒐𝒈 (𝒋)
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How to detect which genes influence traits or diseases?  

Patients

Populated with values 0, 

1 and 2

1 - disease 

0 – no disease

K=3:

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to 

influence traits or diseases. 

- Calculates score for a combination of K genetic 

markers (order).

- Highest score corresponds to SNP combination that 

is most likely to influence the trait or disease.

Populate frequency table

#Columns = 𝟑𝒌

Index Calculation:

𝑰𝑫𝑿 = (𝟏) 𝐱 𝟑

K=3:

Bayesian K2 Score

K2 Calculation

K2 Score:

𝑲𝟐 = ෍

𝒋=𝟏

𝑿+𝒀+𝟏

log (𝒋) + ෍

𝑱=𝟏

𝑿

𝒍𝒐𝒈 𝒋 + ෍

𝒋=𝟏

𝒀

𝒍𝒐𝒈 (𝒋)
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How to detect which genes influence traits or diseases?  

Patients

Populated with values 0, 

1 and 2

1 - disease 

0 – no disease

K=3:

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to 

influence traits or diseases. 

- Calculates score for a combination of K genetic 

markers (order).

- Highest score corresponds to SNP combination that 

is most likely to influence the trait or disease.

Populate frequency table

#Columns = 𝟑𝒌

Index Calculation:

𝑰𝑫𝑿 = (𝟏) 𝐱 𝟑 + 𝟐 𝐱 𝟑

K=3:

Bayesian K2 Score

K2 Calculation

K2 Score:

𝑲𝟐 = ෍

𝒋=𝟏

𝑿+𝒀+𝟏

log (𝒋) + ෍

𝑱=𝟏

𝑿

𝒍𝒐𝒈 𝒋 + ෍

𝒋=𝟏

𝒀

𝒍𝒐𝒈 (𝒋)
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How to detect which genes influence traits or diseases?  

Patients

Populated with values 0, 

1 and 2

1 - disease 

0 – no disease

K=3:

Bayesian K2 Score
High-Order Epistasis

- Relates genetic markers that are most likely to 

influence traits or diseases. 

- Calculates score for a combination of K genetic 

markers (order).

- Highest score corresponds to SNP combination that 

is most likely to influence the trait or disease.

Populate frequency table

#Columns = 𝟑𝒌

Index Calculation:

𝑰𝑫𝑿 = 𝟏 𝐱 𝟑 + 𝟐 𝐱 𝟑 + 𝟎

K=3:

Bayesian K2 Score

K2 Calculation

K2 Score:

𝑲𝟐 = ෍

𝒋=𝟏

𝑿+𝒀+𝟏

log (𝒋) + ෍

𝑱=𝟏

𝑿

𝒍𝒐𝒈 𝒋 + ෍

𝒋=𝟏

𝒀

𝒍𝒐𝒈 (𝒋)
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Original Implementation

Intel Advisor CARM Index Calculation + Frequency Table

Completely dominated by Scalar instructions

Bayesian K2 Score
High-Order Epistasis

- 1 main hotspot

Intel Advisor CARM:

- Loops is bound by both (mem and comp)

- Loop 1: Mainly limited by L3

Advisor Instruction Mix

Bayesian K2 Score
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 obtained from  dvisor  im lation  ool

Original Implementation

Intel Advisor CARM

bound by memory: L2 - Cache

Derived Optimizations:

• Utilization of 8-bit integers to reduce memory footprint

• Vectorization

Bayesian K2 Score
High-Order Epistasis

- 1 main hotspot

Intel Advisor CARM:

- Loop is bound by both (mem and comp)

- Mainly limited by L3

Bayesian K2 Score
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Data is transposed to 

perform vectorization

64 indexes calculated in parallel

Derived Optimizations:

• Utilization of 8-bit integers to reduce memory footprint

• Vectorization

Bayesian K2 Score
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Data is transposed to 

perform vectorization

64 indexes calculated in parallel

Optimized Version – Single-Thread

Intel Advisor CARM

Bayesian K2 Score

High-Order Epistasis

- 1 main hotspot

Intel Advisor CARM:

- Loop is Bound by memory

- Between L2 and L3 Derived Optimizations:

• Utilization of 8-bit integers to reduce memory footprint

• Vectorization

Bayesian K2 Score
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bound by memory – L2 Bound

Optimized Version – Single-Thread

Intel Advisor CARM
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Derived Optimizations:

• Utilization of 8-bit integers to reduce memory footprint

• Vectorization

Bayesian K2 Score

High-Order Epistasis

- 1 main hotspot

Intel Advisor CARM:

- Loop is Bound by memory

- Between L2 and L3

Bayesian K2 Score
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bound by memory – L3 Bound

Optimized Version – 18 Threads

Intel Advisor CARM
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Bayesian K2 Score

High-Order Epistasis

- 1 main hotspot

Intel Advisor CARM:

- Loop is  Bound by memory

- Between L3 and DRAM (closer to L3)

Bayesian K2 Score
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bound by memory – L3 Bound

Optimized Version – 18 Threads

Intel Advisor CARM

Input Set Order
Optimized –

1T

Optimized –

18T

1000s, 

4000p

2 23.71 46.54

3 56.6 959.08

Speedups:Bayesian K2 Score

High-Order Epistasis

- 1 main hotspot

Intel Advisor CARM:

- Loop is  Bound by memory

- Between L3 and DRAM (closer to L3)

Bayesian K2 Score
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Outline

RECAP: ORIGINAL ROOFLINE MODEL*

CACHE-AWARE ROOFLINE MODEL

- PERFORMANCE

- EXTENSIONS: POWER AND ENERGY-EFFICIENCY

APPLICATION CHARACTERIZATION WITH CACHE-AWARE ROOFLINE MODEL

- APPLICATION-DRIVEN CARM

- ISO3DFD CASE STUDY

- PROXY-APPLICATIONS FROM EXASCALE COMPUTING PROJECT

- BAYESIAN K2 SCORE

ON-GOING (FUNDED) PROJECTS



EUROPEAN

PROCESSOR

INITIATIVE

FRAMEWORK PARTNERSHIP AGREEMENT IN EUROPEAN 

LOW-POWER MICROPROCESSOR TECHNOLOGIES

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S HORIZON 2020 RESEARCH AND INNOVATION 

PROGRAMME UNDER GRANT AGREEMENT NO 826647

9/10/2019COPYRIGHT EUROPEAN PROCESSOR INITIATIVE 2019 72
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How EuroHPC will help to make us 

stronger

• Developing a new European 
supercomputing ecosystem: HPC 
systems, network, software, 
applications, access through the 
cloud

• Making HPC resources available 
to public and private users, 
including SMEs.

• Stimulating a technology supply 
industry

COPYRIGHT EUROPEAN PROCESSOR INITIATIVE 2019
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EPI: VISION

• High Performance Computing needs for Exascale

machines beyond 2022

• Connected mobility & Autonomous Driving computing 

needs beyond 2023 

• Low power CPU needs for Servers and Cloud

• Other markets under exploration (Server and Cloud)

COPYRIGHT EUROPEAN PROCESSOR INITIATIVE 2019
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European Processor Initiative

• High Performance General Purpose Processor for HPC 

• High-performance RISC-V based accelerator

• Computing platform for autonomous cars

• Will also target the AI, Big Data and other markets in order to be 

economically sustainable

9/10/2019Copyright European Processor Initiative 201975
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GPP and common architecture

ARM MPPA

eFPGA EPAC

HBM
memorie

s

DDR
memorie

s

PCIe 
gen5
links

HSL
links

D2D links
to adjacent chiplets
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EPAC – RISC-V Accelerator

STX

Bridge to GPP

Bridge to GPP

VPU

VRP

EPAC

 EPAC - EPI Accelerator

 VPU – Vector Processing 

Unit

 STX – Stencil/Tensor 

accelerator

 VRP - VaRiable Precision 

co-processor
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EPI PARTNERS

9/10/2019Copyright European Processor Initiative 201978
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Intel Research Grant

• Boosting the roofline-based optimization 

guidance and performance modeling for 

modern CPU systems

• Started in 2018 and extended for 2019

COPYRIGHT EUROPEAN PROCESSOR INITIATIVE 2019



809/10/2019

Conclusions

SEVERAL CACHE-AWARE ROOFLINE MODELS (EXPERIMENTALLY

VERIFIED)
– For several domains: performance, power and energy

APPLICATION-DRIVEN CARM
– Not only considers different micro-architectures (GPU and NUMA) but also 

considers application requirements: ISA extensions, load/store ratio

– New visual aids for improved characterization: memory traffic and performance 

impact metrics

– Improved characterization of 3 applications representative of real-world 

scenarios: ISO-3DFD, SW4Lite and Bayesean K2 score

ON-GOING (FUNDED) PROJECTS

– EPI and Intel:  show the practical interest of the work

FUTURE WORK

- INCLUDE ADDITIONAL INFORMATION IN APPLICATION DRIVEN CARM (INTEGERS, 

CONVERSIONS…)
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Thank you! 

Questions?

Further readings:

A. Ilic, F. Pratas, and L. Sousa, “Beyond the Roofline: Cache-aware Power and Energy-Efficiency 

Modeling for Multi-cores”, IEEE Transactions on Computers (2017)

A. Ilic, F. Pratas, and L. Sousa, “Cache-aware Roofline model: Upgrading the loft”, IEEE Computer 

Architecture Letters, CAL (2014)

D. Marques, H. Duarte, A. Ilic, L. Sousa, R. Belenov, P. Thierry and Z. Matveev, “Performance Analysis 

with Cache-Aware Roofline Model in Intel Advisor”, tutorial paper, HPCS (2017) 

A. Lopes, F. Pratas, L. Sousa and A. Ilic, “Exploring GPU performance, power and energy-efficiency 

bounds with CARM”, ISPASS (2017)

N. Denoyelle, B. Goglin, A. Ilic, E. Jeannot and L. Sousa, “Modeling Non-Uniform Memory Access on 

Large Compute Nodes with the Cache-Aware Roofline Model”, IEEE TPDS (2018)

A. Ilic, F. Pratas, and L. Sousa, “CARM: Cache-Aware Performance, Power and Energy-Efficiency 

Roofline Modeling”, Intel CATC (2015)

L. Taniça, A. Ilic, P. Tomás, and L. Sousa, “SchedMon: A Performance and Energy Monitoring Tool for 

Modern Multi-cores”, MuCoCoS/Euro-Par (2014)
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Cache-Aware Roofline Model
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Application Characterization:

DRAM

Cache-aware Roofline Model (CARM)1 Classic DRAM Roofline Model2

1) Ilic A., Pratas F., Sousa L., “Cache-aware Roofline Model: Upgrading the loft”, IEEE CAL (2014)
2) Williams S., et. al., “Roofline: An insightful visual performance model for multicore architectures”, Communications of the ACM (2009)

DRAM Application

Arithmetic Intensity [flops/byte]
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Application Characterization:

L1 cache

Cache-aware Roofline Model (CARM)1 Classic DRAM Roofline Model2

1) Ilic A., Pratas F., Sousa L., “Cache-aware Roofline Model: Upgrading the loft”, IEEE CAL (2014)
2) Williams S., et. al., “Roofline: An insightful visual performance model for multicore architectures”, Communications of the ACM (2009)

L1 Application

Arithmetic Intensity [flops/byte]
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Application Characterization:

CARM and ORM

Cache-aware Roofline Model (CARM)1 Classic DRAM Roofline Model2

Arithmetic Intensity [flops/byte]

Observations

(Paradoxes)
CACHE-AWARE ROOFLINE

MODEL

(CARM)

ORIGINAL ROOFLINE MODEL

(ORM)

MEMORY-BOUND

REGION:
Modeled max. 

performance

Achievable
(in practice)

Not achievable
(for architectures with caches)

INTENSITY
Constant

(no variation with the problem size)

Varies with the problem size
(shift from memory-bound to compute-bound)

CHARACTERIZATION:
Optimization Hints

Consistent 
(according to the test nature)

Multi-model
Hint: Optimize memory-bound APP-L1?

APP-DRAM performs better than APP-L1

Performance tends to 

the accessed ceiling

Fixed OI: unexpected 

performance

AI does not vary 

(application property)

Maximum modeled 

performance achievable Modeled maximums not achievable

OI varies with problem size. 

Memory bound becomes compute bound.


