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SETTING THE CONTEXT

• Parallel Performance Analysis can be

• Analytical  Using analytical models 

• Empirical  Using experiments (“monitoring”)

to assess performance

• Parallel could mean

• Loosely-coupled  “Grid” / distributed computing

• Tightly-coupled  HPC

• Performance Monitoring can target 

• Computer systems

• Applications

11. Sep 2019 2



PARALLEL PERFORMANCE TOOLS 101 

Background



PERFORMANCE MEASUREMENT CYCLE
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 Insertion of extra code (probes, hooks)

into application 

Instrumentation

 Transformation of the results into representation 

that can be easily understood by a human user
Presentation

Measurement  Collection of data relevant to

performance analysis

Optimization  Elimination of performance problems (Left to User!)

Analysis  Calculation of metrics, identification of  

performance problems 



PERFORMANCE MEASUREMENT
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When performance measurement is triggered

• External trigger (asynchronous)

• Sampling

• Trigger:  Timer interrupt   OR

Hardware counters overflow

• Internal trigger (synchronous)

• Code instrumentation

(automatic or manual)

How performance data is recorded

• Profile

• Summation of events over time 

• Trace file

• Sequence of events over time

Two dimensions



NO SINGLE SOLUTION IS SUFFICIENT!
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 Combination of methods, techniques and tools needed 

• Instrumentation

• Source code / binary,  static / dynamic, manual / automatic

• Measurement

• Internal / external trigger, profiling / tracing

• Analysis

• Statistics, Visualization, Automatic, Data mining, …



MULTI- AND MANY-CORE 

PERFORMANCE ANALYSIS

How and Why



PARALLEL ARCHITECTURES: STATE OF THE ART
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PERFORMANCE CHALLENGES FOR HPC SYSTEMS

• HPC systems consist of

• Complex configurations

• With a huge number of components

• Very likely heterogeneous

• With never enough memory

• Dynamically changing configuration due to fault recovery + power saving

 Deep software hierarchies of large, complex software components

are needed to make use of such systems

 Sophisticated integrated performance measurement, analysis, and optimization

capabilities are required to efficiently operate an HPC system

11. Sep 2019 9



DESIRED TOOL FEATURES
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This requires tools to be

• Portable 

• Insightful 

• Scalable

• Integrated

• [Versatile]

• [Maintained]

• Easy to use



TYPICAL PERFORMANCE TUNING
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NOT MANY HPC TOOLS MATCH THESE REQUIREMENTS

•TAU

• University of Oregon, US

• http://tau.uoregon.edu

•HPCToolkit

• Rice University, US

• http://hpctoolkit.org

•Extrae / Paraver

• BSC, Spain

• http://www.bsc.es/paraver

•Vampir / VampirServer

• TU Dresden, Germany

• http://www.vampir.eu

•Scalasca

• JSC/TU Darmstadt, Germany

• http://www.scalasca.org

• [Score-P]

• JSC, TUD, TUDA, TUM, RWTH, Germany

• http://www.score-p.org



PORTABILITY

Run everywhere



SCALASCA:  SUPPORTED ARCHITECTURES

• Instrumentation and measurement only

(visual analysis on front-end or workstation)

• Cray XT, XE, XK, XC 

• IBM BlueGene/L, BlueGene/P, BlueGene/Q

• K Machine, Fujitsu FX10 and FX100

• Tianhe 1A and 2

• Intel MIC (KNC, KNL)

• Full support (instrumentation, measurement, and automatic analysis)

• Linux IA32, IA64, x86_64, PPC, ARM, and ARM64 based clusters 

• IBM AIX Power3/4/5/6/7/8/9 based clusters
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TYPICAL HPC PLATFORMS

• OS

• Now: Mostly Linux (and HPC microkernels)

• C/C++ and Fortran Compilers ( OpenMP, OpenACC)

• GNU, Intel, PGI, Clang, IBM XL, Cray, Fuijtsu, ARM, …

• Different versions supporting different versions of OpenMP and OpenACC

• MPI

• MPICH, OpenMPI, Intel, Cray, IBM PE, SGI, Fujitsu, …

• Different versions supporting different versions of MPI
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INSIGHTFULNESS

More than numbers and diagrams



INTERACTIVE EVENT TRACE ANALYSIS: VAMPIR

Visual presentation of 

dynamic runtime 

behaviour

• Event timeline chart for 

states & interactions of 

processes/threads

• Communication 

statistics, summaries & 

more

http://www.vampir.eu/



VAMPIR GUI (ZOOM)

Interactive browsing, 

zooming, selecting

• Linked displays & 

statistics adapt to 

selected time interval

Trace formats

• OTF (VampirTrace)

• OTF2 (Score-P)

• EPIK (Scalasca1) 



“A PICTURE IS WORTH 1000 WORDS…”

• “Real world”

example

• MPI ring program



“WHAT ABOUT 1000’S OF PICTURES?”

(WITH 100’S OF MENU OPTIONS)



EXAMPLE AUTOMATIC ANALYSIS:  LATE SENDER



EXAMPLE MPI WAIT STATES
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11. Sep 2019 22



SCALASCA

• Scalable Analysis of Large Scale Applications

• Approach

• Instrument C, C++, and Fortran parallel applications (with Score-P)

• Option 1: scalable call-path profiling

• Option 2: scalable event trace analysis

• Collect event traces 

• Process trace in parallel

• Wait-state analysis

• Delay and root-cause analysis

• Critical path analysis

• Categorize and rank results

http://www.scalasca.org/
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SCALASCA EXAMPLE: CESM SEA ICE MODULE

Late Sender

Analysis

• Finds waiting at

MPI_Waitall()

inside

ice boundary

halo update

• Shows distribution

of imbalance

across system

and ranks



SCALASCA EXAMPLE: CESM SEA ICE MODULE

Late Sender

Analysis +

Application

Topology

• Shows distribution

of imbalance

over topology

• MPI topologies

are automatically

captured



SCALASCA ROOT CAUSE ANALYSIS
• Root-cause analysis

• Wait states typically caused by load or 

communication imbalances earlier in 

the program

• Waiting time can also propagate (e.g., 

indirect waiting time)

• Enhanced performance analysis to find 

the root cause of wait states

• Approach

• Distinguish between direct and 

indirect waiting time

• Identify call path/process 

combinations delaying other 

processes and causing first order 

waiting time

• Identify original delay

time
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Send
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Recv

Direct waitIndirect wait

Recv

barDELAY



SCALASCA EXAMPLE: CESM SEA ICE MODULE

Direct Wait

Time Analysis

• Direct wait

caused by ranks

processing areas

near the north

and south

ice borders



SCALASCA EXAMPLE: CESM SEA ICE MODULE

Indirect Wait

Time Analysis

• Indirect waits

occurs for

ranks processing

warmer areas



SCALASCA EXAMPLE: CESM SEA ICE MODULE

Delay Costs

Analysis

• Delays NOT
caused on ranks

processing

ice!



INTEGRATION

Together we are strong



INTEGRATION

• Need integrated tool (environment) for all levels of parallelization

• Inter-node (MPI, PGAS, SHMEM)

• Intra-node (OpenMP, multi-threading, multi-tasking)

• Accelerators (OpenACC, CUDA, OpenCL, and many more)

• Integration with performance modeling and prediction

• No tool fits all requirements

• Interoperability of tools

• Integration via open interfaces
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STATUS:  GPU SUPPORT (BEYOND MPI+OPENMP)
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Tool GPU programming systems supported

TAU AMD ROCm+HIP, Kokkos, OpenCL, OpenACC, CUDA

• Plans to support OpenMP target

HPCToolkit OpenMP target, CUDA, RAJA, Kokkos

Extrae/Paraver CUDA, OpenCL, OmpSs

• Plans to support OpenACC, OpenMP target

Score-P/Scalasca/Vampir CUDA, OpenACC, OpenCL

• Experimental support for Kokkos, OmpSs

• Plans to support OpenMP target

*

* No publicly accepted definition what “XXX support” actually means
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• Community-developed
open-source

• Replaced tool-specific
instrumentation and
measurement components
of partners

• http://www.score-p.org

11. Sep 2019

http://www.score-p.org/


Scalasca
wait-state

analysis

CUBE4 
report

TOOL ECOSYSTEM

CUBE4 
report

Online interface

Instrumented

target

application 

Score-P

PAPI

OTF2 
traces

TAU
PerfExplorer

Periscope

TAU

ParaProf

CUBE

Vampir

Remote   Guidance
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EXTREME CONCURRENCY

To infinity and beyond
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TYPICAL HPC SYSTEM SIZE (NO. OF CORES)

Number of Cores

TOP 500 systems

2000 to 2019

• 2019/06 Avg:

• 120,160

• 2019/06 Median:

• 57,600
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ROADS TO PERFORMANCE TOOL SCALABILITY

• Scalable data collection and reduction

• Parallel collection + reduction based on MPI + parallel I/O (All tools) 

• Automatic detection of most important execution phases (Paraver)

• Scalable parallel data analysis

• Parallel client/server processing and visualization (Vampir) 

• Parallel wait-state, delay and critical-path analysis (Scalasca)

• Parallel analyzer and visualizer (Paraver)

• Scalable visualizations

• 3D charts and topology displays (TAU, Scalasca)

• Hierarchical browsers (Scalasca)
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STATUS:  TOOLS SCALABILITY

Tool Largest (stunt) run by developer Max size expert user 

TAU 786,432 processes

• 48 racks Mira, BG/Q, ALCF

• KG (Klein Gordon) code. MPI only

O(100K)

HPCToolkit 64K processes

• Cielo, SNL/LANL

• Shock physics code

O(10K)
• ECP funded scalability 

enhancements by Q4/2019

Extrae/Paraver 64K processes

• Cray XT5

• PFLOTRAN

O(1K)

Score-P/Scalasca 28,672 x 64 1,835,008 threads (28,672 x 64)

• 28 racks JuQueen, BG/Q, JSC

• Nekbone (CORAL benchmark)

O(100K)

Score-P/Vampirserver 200,448 processes

• JaguarPF, OLCF

• S3D (SNL)

• Required 21,516 analysis processes

O(10K)



VAMPIRSERVER: TRACE VISUALIZATION S3D@200,448

• OTF2

trace

4.5 TB

• Vampir

Server

running

with

20,000

analysis

processes
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SCALASCA: 1,835,008 THREADS TEST CASE 

• Nekbone

• CORAL benchmark

• JuQueen experiment

• 28,672 x 64 = 

1,835,008 threads 

• Load imbalance at 

OpenMP critical 

section



PERFORMANCE ASSESSMENT 

AS A SERVICE

Do I really need that?



POP CoE (https://pop-coe.eu)

• A Centre of Excellence

• On Performance Optimisation and Productivity

• Promoting best practices in parallel programming

• Providing FREE Services
• Precise understanding of application and system behaviour
• Suggestion/support on how to refactor code in the most productive way

• Horizontal

• Transversal across application areas, platforms, scales

• For (EU) academic AND industrial codes and users !
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• Who?
• BSC, ES (coordinator)

• HLRS, DE

• IT4I, CZ

• JSC, DE

• NAG, UK

• RWTH Aachen, IT Center, DE

• TERATEC, FR

• UVSQ, FR

A team with

• Excellence in performance tools and tuning

• Excellence in programming models and practices

• Research and development background AND 
proven commitment in application to real academic and industrial use cases 43

Partners



• Parallel Application Performance Assessment
• Primary service

• Identifies performance issues of customer code (at customer site)

• If needed, identifies the root causes of the issues found and
qualifies and quantifies approaches to address them (recommendations)

• Combines former Performance Audit (?) and Plan (!)

• Medium effort (1-3 months)

• Proof-of-Concept ()
• Follow-up service

• Experiments and mock-up tests for customer codes

• Kernel extraction, parallelisation, mini-apps experiments to show
effect of proposed optimisations

• Larger effort (3-6 months)

Note: Effort shared between our experts and customer!

FREE Services provided by the CoE

44
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Status after 2½ Years (End of Phase1)

• 139 completed or reporting to customer

• 13 more in progress
Performance
Assessments

• 19 completed Proofs of Concept

• 3 more in progress
Proof-of-
Concept



• See  https://pop-coe.eu/blog/tags/success-stories

• Performance Improvements for SCM’s ADF Modeling Suite

• 3x Speed Improvement for zCFD Computational Fluid Dynamics Solver

• 25% Faster time-to-solution for Urban Microclimate Simulations 

• 2x performance improvement for SCM ADF code

• Proof of Concept for BPMF leads to around 40% runtime reduction

• POP audit helps developers double their code performance

• 10-fold scalability improvement from POP services

• POP performance study improves performance up to a factor 6

• POP Proof-of-Concept study leads to nearly 50% higher performance

• POP Proof-of-Concept study leads to 10X performance improvement for customer

Some PoC Success Stories

Improvements

Reductions
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ROI Examples

Application Savings after POP Proof-of-Concept

• POP PoC resulted in 72% faster-time-to-solution

• Production runs on ARCHER (UK national academic supercomputer)

• Improved code saves €15.58 per run

• Yearly savings of around €56,000 (from monthly usage data)

Application Savings after POP Performance Plan

• Cost for customer implementing POP recommendations: €2,000

• Achieved improvement of 62% 

• €20,000 yearly operating cost

• Resulted in yearly saving of €12,400 in compute costs   ROI of 620%
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OUTSTANDING ISSUES

What does not work right now very well



FUTURE WORK

• Memory and vectorization performance analysis

• Hard to capture performance data

• Only possible if suitable hardware counters are provided

• VERY processor specific   hard for open-source portable tools

• Trend towards task-based / asynchronous programming models

• Very dynamic execution might be non reproducible   off-line tools fail

• Hard to get the “big picture”   good high-level metrics still missing here

• Trend towards more modern programming languages (Python, C++)

• How to automatically instrument template-based frameworks and programming styles?

• How to present the data on Python level (and not on the interpreter lowlevel)?

• Performance assessment of data analytics codes
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USEFUL RESOURCES

Overview Parallel Performance and Debugging Tools

• http://pramodkumbhar.com/2017/04/summary-of-profiling-tools/

• http://pramodkumbhar.com/2018/06/summary-of-debugging-tools/

• http://pramodkumbhar.com/2019/05/summary-of-python-profiling-tools-part-i/

5011. Sep 2019
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MY REQUEST

• Give performance tools a chance!

• It will require effort

• Need to read and understand tool documentation

• Attend tool tutorial at conference or tool training at HPC centres

• Attend tuning workshops or performance hackathons

• Do not give up at the first thing that does not work

• Ask for help from tool developers

• Report tool (and documentation) bugs
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PERFORMANCE TUNING: STILL A PROBLEM?
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Contact:
https://www.pop-coe.eu
mailto:pop@bsc.es

@POP_HPC
youtube.com/c/POPHPC

This project has received funding from the European Union‘s Horizon 2020 research and innovation programme under grant agreement No 676553 and 824080. 

Performance Optimisation and Productivity 
A Centre of Excellence in HPC



QUESTIONS?

• http://www.scalasca.org

• scalasca@fz-juelich.de

• http://www.score-p.org

• support@score-p.org
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B A C K U P



MEASUREMENT METHODS: PROFILING 

• Recording of aggregated information

• Time

• Counts

• Calls

• Hardware counters

• about program and system entities

• Functions, call sites, loops, basic blocks, …

• Processes, threads

• Statistical information

• Min, max, mean and total number of values
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Advantages
+ Works also for

long-running programs

Disadvantages
‒ Variations over time

get lost



MEASUREMENT METHODS: TRACING

• Recording information about significant

points (events) during execution of the program

• Enter/leave a code region (function, loop, …)

• Send/receive a message ...

• Save information in event record

• Timestamp, location ID, event type

• plus event specific information

• Event trace    := stream of event records

sorted by time

 Abstract execution model on level of defined events
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Advantages
+ Can be used to

reconstruct the
dynamic behavior

+ Profiles can be calculated
out of trace data

Disadvantages
‒ Can only be used for

short durations or small
configurations

‒ HUGE trace files



EVENT TRACING

void foo() {

...

send(B, tag, buf);

...

}

Process A

void bar()  {

...

recv(A, tag, buf);

...

}

Process B

MONITOR

MONITOR

s
y
n

c
h

ro
n

iz
e

(d
)

void bar() {

trc_enter("bar");

...

recv(A, tag, buf);

trc_recv(A);

...

trc_exit("bar");

}

void foo() {

trc_enter("foo");

...

trc_send(B);

send(B, tag, buf);

...

trc_exit("foo");

}

instrument

Global trace 

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

merge

unify
1 foo

2 bar

...

58 ENTER 1

62 SEND B

64 EXIT 1

...

...

Local trace A

Local trace B

foo1

...

bar1

...

60 ENTER 1

68 RECV A

69 EXIT 1

...

...



EVENT TRACING: “TIMELINE” VISUALIZATION

1 foo

2 bar

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main

foo

bar

58 60 62 64 66 68 70

B

A
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JÜLICH SUPERCOMPUTING CENTRE

Forschungszentrum Jülich GmbH



FORSCHUNGSZENTRUM JÜLICH GMBH

• Germany's largest 

national laboratory

• About 5800 employees

• Research areas

• Information technology

• Health (Neuroscience / 

brain research)

• Energy

• Atmosphere + Climate
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JÜLICH SUPERCOMPUTING CENTRE (JSC)

HPC Centre for

• Forschungszentrum Jülich

• Jülich Aachen

Research Alliance (JARA)

• Germany as GCS

(1 of 3 German National 

Centres)

• Europe

(1st European Centre 

inside PRACE)
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JSC MACHINE HALL (JULY 2018)

JURECA
~45.000 cores Haswell

JURECA Booster
~1700 KNL nodes

JUWELS
~110.000 cores Skylake

JUQUEEN
458.752 cores IBM BGQ

STORAGE

STORAGE
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… WHEN LARGE COMPANIES 

“COPY” YOUR STUFF

You KNOW YOU made it …



Source:

https://software.intel.com/en-us/videos/quickly-discover-performance-issues-with-the-intel-trace-analyzer-and-collector-90-beta



Source:

https://software.intel.com/en-us/videos/quickly-discover-performance-issues-with-the-intel-trace-analyzer-and-collector-90-beta



INTEGRATION

Together we are strong



FUNCTIONALITY

• Provide typical functionality for HPC performance tools

• Instrumentation (various methods)

• Multi-process paradigms (MPI, SHMEM)

• Thread-parallel paradigms (OpenMP, POSIX threads)

• Accelerator-based paradigms (OpenACC, CUDA, OpenCL)

• In any combination!

• Flexible measurement without re-compilation:

• Basic and advanced profile generation ( CUBE4 format)

• Event trace recording ( OTF2 format)

• Online access to profiling data

• Highly scalable I/O functionality

• Support all fundamental concepts of partner’s tools
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SCALASCA  VAMPIR INTEGRATION

1. Connect to Vampir

• Loads underlying trace



SCALASCA  VAMPIR INTEGRATION

1. Connect to Vampir

• Loads underlying trace

2. Use context menu

• Max severity

• Zooms to 

corresponding view



SCALASCA  VAMPIR INTEGRATION

1. Connect to Vampir

• Loads underlying trace

2. Use context menu

• Max severity

• Zooms to 

corresponding view

3. Use extensive Vampir

features to investigate

further



p4 = 1,024

p5 = 2,048

p6 = 4,096

INTEGRATION OF MEASUREMENT AND MODELLING

• Example: DFG SPPEXA Catwalk Project

main() { 

foo()

bar()

compute()

}
Instrumentation + Measurement 

Performance measurements (profiles)

Input

Output

p1 = 128

p2 = 256

p3 = 512

Automated 

modeling

• All functions

Rank Function Model [s]

1 bar() 4.0 * p + 0.1*log(p) 

2 compute() 0.5 * log(p)

3 foo() 65.7



CATWALK: RESULT VISUALIZATION

• Reusing Cube

result browser

• However:

browsing functions

instead of values


