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Energy of computing: Background and optimization methods

Energy Consumption in ICT
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Global Energy Consumption Verses ICT Energy Consumption

Adopted from A. Andrae, T. Edler (2015). On global electricity usage of communication technology: trends to 2030. Challenges, 6(1),
-157.



Energy of computing: Background and optimization methods

Optimization of energy of computing
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Energy of computing: Background and optimization methods

Energy optimization of software applications

Key approaches to energy optimization of applications are:

1. System-level energy optimization such as Dynamic Voltage and
Frequency Scaling (DVFS), Dynamic Power Management (DPM), and
energy-aware scheduling.

» Optimization of the executing environment rather than the
application — mainstream approach

2. Application-level energy optimization techniques that use
application-level parameters [1].

» Optimization of the application rather than the executing
environment

[1] A. Lastovetsky, R.R. Manumachu (2017). New model-based methods and algorithms for performance and energy optimization of data
parallel applications on homogeneous multicore clusters. IEEE Transactions on Parallel and Distributed Systems, 28(4), 1119-1133.



Application-level optimization methods

Optimization for energy in the ideal world

No room for application-level optimization for energy in the ideal HPC
world.

The ideal HPC world:
» Linear
» Homogeneous

This means that

» Any distribution of workload between identical linear
parallel processors will consume the same dynamic energy

» Load-balanced distribution will always be optimal for
performance and energy



Application-level optimization methods

Linearity of performance

Execution time is a linear function of workload.
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Figure: Speed function of OpenBLAS DGEMM application executed on a
single core on the Intel Haswell workstation.



Application-level optimization methods

Linearity of energy

Energy is a near-linear function of workload
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Figure: Dynamic energy consumption of OpenBLAS DGEMM application
executed on a single core on the Intel Haswell workstation.



Application-level optimization methods

Linearity of energy

Energy function for server is even more linear
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Figure: Dynamic energy consumption of OpenBLAS DGEMM application
executed on a single core on the Intel Haswell server.



Application-level optimization methods

Energy profile and optimization for energy

v

E(x) - energy consumed by processor executing workload x
Equal distribution of workload between identical processors

v

2
» minimizes energy consumption if %(XX) > 0and %ﬁx) >0.

If E(x) — linear (% = 0), all distributions are equivalent
» E(x1)+ ...+ E(Xp)=(p—1) X EQ)+ E(X1 + ...+ Xp) =
(p—1)x EQQ) + E(W) (X1 + ...+ Xp = W)

If E(x) is convex (dif((;‘) > 0), any uneven distribution consumes

more energy than the equal load-balanced one.

» Forany x, E(x) < Ex=AxECHAY) and hence,

E(x)+ E(x) < E(x — AX)2+ E(x + Ax).

v

v
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Application-level optimization methods

Convex energy profile

Energy

E(x)

0 X - AX X X + AX Workload
Figure: For any x, E(x) < EX=A0TECEAY "and hence,
E(x) + E(x) < E(x — AX) + E(x + Ax)
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Application-level optimization methods

Optimization for energy in the ideal world

In the linear and homogeneous HPC world:

» Any distribution of workload between identical linear parallel
processors will consume the same dynamic energy

» Load-balanced distribution will always be optimal for
performance and energy
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Application-level optimization methods

Optimization for energy in the real world

The real HPC world:

» Increasingly heterogeneous
» Almost 30% of systems in Top500 are heterogeneous

System Share of Accelerators in Top500 Supercomputers over Time
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» Non-linear
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Application-level optimization methods

Non-linearity of performance

OpenBLAS DGEMM (T=24 threads)
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Figure: OpenBLAS DGEMM executing 24 threads on 24-core CPU of the
Intel Haswell server.
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Application-level optimization methods

Non-linearity of performance in multicore era

FFTW application computing 2D discrete Fourier transform of size n x n:
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Figure: FFTW executing 24 threads on 24-core CPU of the server.
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Application-level optimization methods

Non-linearity and heterogeneity of performance

Speed Function of Heterogeneous FFT
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Figure: 2D FFT speed functions.
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Application-level optimization methods

Non-linearity of performance: Analysis

More threads/cores => bigger variations:

OpenBLAS DGEMM, T=Number of Threads
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Figure: Speed function of OpenBLAS DGEMM application executing varying
number of threads (T) on the Intel Haswell server.
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Application-level optimization methods

Non-linearity and heterogeneity of energy

2D FFT Dynamic Energy Function
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Figure: 2D FFT energy functions of CPU and GPU on the Intel Haswell
HCLServer01.
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Application-level optimization methods

Non-linearity and heterogeneity of energy

Dynamic Energy Function of Heterogeneous FFT
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Figure: 2D FFT energy functions of five compute devices across Intel Haswell
HCLServer01 nad HCLServer02.
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Application-level optimization methods

Implications of heterogeneity

Performance and energy profiles of two heterogeneous processors

i i
Linear performance profiles Linear dynamic energy profiles
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Application-level optimization methods

Implications of heterogeneity

For p linear heterogeneous processors [1]:
» Load-balanced solution minimizes time

» Solution using the single most energy-efficient processor
minimizes dynamic energy consumption
» There is infinite number of globally Pareto-optimal solutions
» Can be found analytically

[1]. H.Khaleghzadeh, M.Fahad, A. Shahid, R. Manumachu, and A. Lastovetsky, "Bi-objective Optimization of Data-parallel
Applications on Heterogeneous HPC Platforms for Performance and Energy through Workload Distribution", revision under
preparation for IEEE Transactions on Parallel and Distributed Systems.
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Application-level optimization methods

Implications of non-linearity

For p homogeneous non-linear processors:

» Performance-optimal and energy-optimal solutions are not
necessarily load-balanced [1]

» There are exact efficient algorithms of complexity O(m? x p?),
where m is the cardinality of discrete performance and energy
profiles, finding performance-optimal and energy-optimal solutions
(1]

» The number of globally Pareto-optimal solutions for performance
and energy is significant

» There is an exact efficient algorithm of complexity O(m? x p?)
solving the bi-objective optimization problem [2]

[1]. A. Lastovetsky and R. Reddy, "New Model-based Methods and Algorithms for Performance and Energy Optimization of Data
Parallel Applications on Homogeneous Multicore Clusters", IEEE Transactions on Parallel and Distributed Systems
28(4):1119-1133, 2017.

[2]. R. Reddy and A. Lastovetsky, "Bi-Objective Optimization of Data-Parallel Applications on Homogeneous Multicore Clusters for
Performance and Energy", IEEE Transactions on Computers 67(2):160-177, 2018.
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Application-level optimization methods

Implications of heterogeneity AND non-linearity

For p non-linear heterogeneous processors [1]:

» Performance-optimal and energy-optimal solutions are generally
load-imbalanced [1]
» There are exact efficient algorithms of complexity O(m® x p%)
finding performance-optimal, and dynamic energy-optimal, and
total energy-optimal solutions [1]
» The number of globally Pareto-optimal solutions for performance
and energy is quite significant
» There are exact efficient algorithms of complexity O(m® x p%)
solving the bi-objective optimization problems for performance and
dynamic energy and for performance and total energy [1]

[1]. H.Khaleghzadeh, M.Fahad, A. Shahid, R. Manumachu, and A. Lastovetsky, "Bi-objective Optimization of Data-parallel
Applications on Heterogeneous HPC Platforms for Performance and Energy through Workload Distribution", revision under
preparation for IEEE Transactions on Parallel and Distributed Systems.
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Challenges of practical optimization for energy

Challenges of practical optimization for energy

To apply the energy-optimization methods in practice, we need
» Energy profiles of individual components of a hybrid parallel application
» Their performance profiles (for bi-objective optimization)

Therefore, we need:
» Methods for component-level measurement of the execution time

» All processing units equipped with clocks
» While not trivial for tightly coupled units but doable

» Methods for component-level measurement of energy consumption

> No reliable equivalent of clocks
» Real challenge

» In the absence of such methods, the problem becomes intractable

» We will have to experimentally build the energy profile of cardinality
m P instead of m x p
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Challenges of practical optimization for energy

Component-level measurement of energy
consumption
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Figure: Hybrid Intel Haswell-based server and typical configuration of a
parallel application.
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Challenges of practical optimization for energy

Methods of measurement of energy consumption

Three approaches to component-level energy measurement [1]:
» System-level physical measurements using external power meters
» Most accurate but expensive
» We use them as ground truth
» Measurements using on-chip power sensors
» Intel RAPL (Running Average Power Limit), Intel Xeon Phi SMC
(System Management Controller), AMD APM (Application Power
Management), Nvidia NVML (Nvidia Management Library)
» Inaccurate and poorly documented
» Energy predictive models

» Mostly use performance monitoring counters (PMCs) as predictor
variables

» State-of-the-art models not accurate

» The only realistic alternative to methods using power meters

[1]. M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, "A Comparative Study of Methods for Measurement of Energy of
Computing”, Energies, vol. 12, issue 11: MDPI, pp. 42, 2019.
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Challenges of practical optimization for energy

Accuracy of on-chip power sensors

Accuracy of RAPL on Intel Xeon Skylake (2 socket, 28 cores each) [1]
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Figure: Dynamic energy profiles of FFTW (N = 20, 480 — 26, 560) by RAPL
and HCLWattsUp on HCLServer03.

[1]. M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, "A Comparative Study of Methods for Measurement of Energy of
Computing", Energies, vol. 12, issue 11: MDPI, pp. 42, 2019.
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Challenges of practical optimization for energy

Accuracy of on-chip power sensors

Accuracy of RAPL, NVML and RAPL+NVML on a hybrid server [1]
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Figure: Dynamic energy consumption profiles of DGEMM on Nvidia K40c
GPU on HCLServer01.

[1]. M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, "A Comparative Study of Methods for Measurement of Energy of
Computing", Energies, vol. 12, issue 11: MDPI, pp. 42, 2019.
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Challenges of practical optimization for energy

Accuracy of on-chip power sensors

Accuracy of RAPL, NVML and RAPL+NVML on a hybrid server [1]
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Figure: Dynamic energy consumption profiles of CUDA FFT on Nvidia K40c
GPU on HCLServer02.

[1]. M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, "A Comparative Study of Methods for Measurement of Energy of
Computing", Energies, vol. 12, issue 11: MDPI, pp. 42, 2019.
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Challenges of practical optimization for energy

Energy losses due to inaccurate measurements

Optimization for energy of a data-parallel parallel DGEMM application
employing Intel MKL and running on Intel Haswell and Intel Skylake CPUs
B
» Matrices A and C partitioned horizontally between the CPUs to minimize
the dynamic energy consumption

» Energy profiles of the CPUs are inputs to the partitioning algorithm [2]
» Two solutions are compared

» Using energy profiles obtained with HCLWattsUp
» Using energy profiles obtained with RAPL

» Measured energy losses of RAPL-based solutions against HCLWattsUp
ranged from 37% to 84% depending on problem size

[1]. M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, "A Comparative Study of Methods for Measurement of Energy of
Computing”, Energies, vol. 12, issue 11: MDPI, pp. 42, 2019.

[2]. H.Khaleghzadeh, M.Fahad, A. Shahid, R. Manumachu, and A. Lastovetsky, "Bi-objective Optimization of Data-parallel
Applications on Heterogeneous HPC Platforms for Performance and Energy through Workload Distribution", revision under
preparation for IEEE Transactions on Parallel and Distributed Systems.
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PMC-based energy modelling

Performance Monitoring Counters (PMCs)

Performance Monitoring Counters (PMCs):

» Special-purpose registers to store the counts of software and hardware
activities
» Primarily used for low-level performance analysis and tuning
» Large in number — Intel Haswell: 164, Intel Skylake: 385
» Can not be collected all simultaneously — 3-4 in one application run
» Architecture specific — non-portable
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PMC-based energy modelling

Linear PMC-based Energy Predictive Model

Linear PMC-based dynamic energy predictive models are most common:
E= Z/Aio Bj x Xj+ €
where x; are the predictor variables (PMCs) and e is the error term

Dominant PMC groups:
Cache misses

Branch instructions
Floating point operations
Page faults

vV v.v v Yy

Memory Accesses
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PMC-based energy modelling

PMC-based Models — More Insights

Existing Issues
» Large number of PMCs to consider
» Require tremendous programming effort and time to collect PMCs
» Pure PMC-based model lacks portability

Existing techniques to select PMCs for a model

» Consider all PMCs to capture all possible contributors to energy
consumption

» Based on a statistical methodology — Correlation, Principal Component
Analysis (PCA)

» Using expert advice or intuition to pick a subset
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PMC-based energy modelling

Accuracy of PMC-based Energy Models

» Selection of PMCs for a predictive model is still an open problem

» Numerous PMC-based models proposed but none is sufficiently
accurate [1]
» Publications report excellent accuracy but
> They typically report the prediction accuracy of total energy with very
high static power base
> Most reported results are not reproducible
» The best verifiable average prediction error of average dynamic
power by such models for a Intel Haswell platform is in the range of
90-100% [1]

[1]. K. O'Brien, . Petri, R. Reddy, A. Lastovetsky, and R. Sakellariou, "A survey of power and energy predictive models in HPC
systems and applications", ACM Computing Surveys, vol. 50, issue 3, 2017.
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PMC-based energy modelling

Causes of inaccuracy of PMC-based energy models

» One cause of inaccuracy of PMC-based energy models was recently
discovered [1]
» Many popular PMCs are not additive on modern multicore
processors
» Energy is additive
» Energy consumption of serial execution of two applications A and B
is equal to the sum of their individual consumptions, Eag = Ea + Eg
» Therefore, any PMC parameter x in a linear power/energy predictive
model should be additive, xag = x4 + Xg
» Many popular PMCs are non-additive, some with up to 200%
deviation from additivity
» Numbers of non-additive PMCs increases with the increase of
cores (very few non-additive PMCs in the case of single core)
» Another cause — violation of basic laws of energy conservation [1]
» Non-zero intercept in a dynamic energy model
» Negative coefficients

[1]. A. Shahid, M. Fahad, R. R. Manumachu, and A. Lastovetsky, "Additivity: A selection criterion for performance events for
reliable energy predictive modeling", Supercomputing Frontiers and Innovations, vol. 4, pp. 50-65, 2017. 35/39



PMC-based energy modelling

Improving the accuracy of PMC-based energy models

The accuracy of PMC-based energy models can be improved by
» Removing non-additive PMCs from models
» Enforcing basic laws of energy conservation

» By applying this technique, the accuracy of the state-of-the-art
models have been significantly improved, bringing it to 25-30%

[1]

Still long way to go.

[1]. A. Shahid, M. Fahad, R. R. Manumachu, and A. Lastovetsky, "Improving the Accuracy of Energy Predictive Models for
Multicore CPUs Using Additivity of Performance Monitoring Counters”, HerteroPar 2019.
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Summary

Summary

» Modern platforms provide significant opportunities for
application-level energy optimization and bi-objective
optimization for energy and performance

» Efficient optimization algorithms is not a grand challenge
» They exist and many more to follow

» The real grand challenge is accurate component-level energy
measurements
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Thank You!

Questions?
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