

NUMA Architectures

Dirk Schmidl schmidl@itc.rwth-aachen.de

Thanks to the following people for providing parts of the slides:

- Christian Terboven (RWTH Aachen)
- Sandra Wienke (RWTH Aachen)
- Michael Klemm (Intel)

NUMA Architectures

• Uniform Memory Access (UMA):

• Non Uniform Memory Access (NUMA):

- Pro:
 - Easier to program
- Con:
 - Main Memory bandwidth is a bottleneck
 - Limits system size

- Pro:
 - Higher overall memory bandwidth
 - Every processor adds bandwidth to the system
- Con:
 - Needs to be considered be programmers

NUMA Architectures

Standard Server:

- Blade-Server
- 2 Processors

3

• NUMA Architecture

Numascale System (Running at the University of Oslo):

- 4 Racks
- 144 Processors
- 1728 Cores
- 4,6 TB Main Memory

4 Socket Intel Xeon System:

Hierarchical NUMA System:

- 2 Levels of Cache-coherent interconnects
- different protocols on different levels

	bandwidth	latency
lokal	~ 15,1 GB/s	~ 115 ns
QPI	~ 12,8 GB/s	~ 144 ns
BCS	~ 3,4 GB/s	~ 300 ns

16 Socket Bull Coherence Switch (BCS) System:

Advanced OpenMP Tutorial Dirk Schmidl | IT Center RWTH Aachen University PPAM 2017, September 10, 2017, Lublin, Poland

numactl - command line tool to investigate and handle NUMA under Linux

- \$ numactl --hardware prints information on NUMA nodes in the system
- \$ numactl --show prints information on available recourses for the process

Investigating NUMA topologies

letono - tool to show the system						
	NUMANode P#0 (16GB)					
topology	Socket P#0 PCI 8086:					
1 05	L3 (20MB) PCI 8086:1521					
	L2 (256KB)					
information on NU INAA nodeo	L1d (32KB)					
	L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) eth1					
NUMANAda D#1 (16CP)	Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7 PCI 8086:1521					
NOMPHODE F#1 (1868)	PU P#0 PU P#1 PU P#2 PU P#3 PU P#4 PU P#5 PU P#6 PU P#7 PU P#7 etth2					
	PU P#16 PU P#17 PU P#18 PU P#19 PU P#20 PU P#21 PU P#22 PU P#23 PU P#23 PU P#23 PU P#23 PU P#23 PU P#23 PU P#24 PU P#24 PU P#24 PU P#25 PU P#25 PU P#25 PU P#25 PU P#26 PU PU P#26 PU P#26 PU PU P#26 PU PU P#26 PU P#26 PU					
Socket P#1	eth3					
L3 (20MB)						
L2 (256KB) L2 (256KB) L2 (256KB) L2	PCI 8085:1002					
L1d (32KB) L1d (32KB) L1d (32KB) L1	NUMANode P#1 (16GB)					
	Socket P#1 PCI 15b3:673c					
L1i (32KB) L1i (32KB) L1i (32KB) L1i	L3 (20MB) Ib0					
	L2 (256KB)					
Core P#0 Core P#1 Core P#2 Co	L1d (32KB)					
	L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB)					
PU P#8 PU P#9 PU P#10 F	Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7					
	PU P#8 PU P#9 PU P#10 PU P#11 PU P#12 PU P#13 PU P#14 PU P#15					
PU P#24 PU P#25 PU P#26 F	L PU P#24 L PU P#26 L PU P#27 L PU P#28 L PU P#29 L PU P#30 L PU P#31					
	Host: cluster-phi/rz.RWTH-Aachen.DE					
Line the second se						

Optimizing NUMA accesses

Goal: Minimize the number of remote memory accesses as much as possible!

- 1. How are threads distributed on the system?
- 2. How is the data distributed on the system?
- 3. How is work distributed across threads?

- Selecting the "right" binding strategy depends not only on the topology, but also on the characteristics of your application.
 - Putting threads far apart, i.e. on different sockets
 - May improve the aggregated memory bandwidth available to your application
 - May improve the combined cache size available to your application
 - May decrease performance of synchronization constructs
 - Putting threads close together, i.e. on two adjacent cores which possibly shared some caches
 - May improve performance of synchronization constructs
 - May decrease the available memory bandwidth and cache size
- Available strategies:
 - **close**: put threads close together on the system
 - **spread**: place threads far apart from each other
 - master: run on the same place as the master thread

• Assume the following machine:

- 2 sockets, 4 cores per socket, 4 hyper-threads per core
- Abstract names for OMP_PLACES:
 - threads: Each place corresponds to a single hardware thread on the target machine.
 - cores: Each place corresponds to a single core (having one or more hardware threads) on the target machine.
 - sockets: Each place corresponds to a single socket (consisting of one or more cores) on the target machine.

- Example's Objective:
 - separate cores for outer loop and near cores for inner loop
- Outer Parallel Region: proc_bind(spread), Inner: proc_bind(close)
 - spread creates partition, compact binds threads within respective partition
 OMP_PLACES={0,1,2,3}, {4,5,6,7}, ... = {0:4}:8:4 = cores
 #pragma omp parallel proc_bind(spread)
 #pragma omp parallel proc bind(close)
- Example

• int omp_get_place_num(void);

- returns the place number of the place where the encountering thread is bound to

- void omp_place_get_num_procs(int place_num);
 returns the number of processors in place place_num
- void omp_get_place_proc_ids(int place_num, int *ids);
 returns the ids of processors in place place_num
- int omp_get_partition_num_places(void);
 returns the number of places of the partition of the encountering thread
- void omp_get_partition_place_nums(int *place_nums);
 returns the number of places in the partition of the encountering thread

- Sparse Linear Algebra
 - Sparse Linear Equation Systems occur in many scientific disciplines.
 - Sparse matrix-vector multiplications (SpMxV) are the dominant part in many iterative solvers (like the CG) for such systems.
 - number of non-zeros << n*n

Case Study: CG

• $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 4 & 0 & 4 & 4 \end{pmatrix}$

- Format: compressed row storage
 - store all values and columns in arrays (length nnz)
 - store beginning of a new row in a third array (length n+1)

value: index: row:

Implementation:

- parallelize all hotspots with a parallel for construct
- use a reduction for the dot-product
- activate thread binding

Data Placement

- Important aspect on cc-NUMA systems
 - If not optimal, longer memory access times and hotspots
- OpenMP does not provide support for cc-NUMA
- Placement comes from the Operating System
 - This is therefore Operating System dependent
- Windows, Linux and Solaris all use the "First Touch" placement policy by default

First-touch in action

Serial code: all array elements are allocated in the memory of the NUMA node containing the core executing this thread

First-touch in action

Serial code: all array elements are allocated in the memory of the NUMA node containing the core executing this thread

```
double* A;
A = (double*)
    malloc(N * sizeof(double));
```

```
omp_set_num_threads(2);
```

```
#pragma omp parallel for
for (int i = 0; i < N; i++) {
    A[i] = 0.0;
}</pre>
```


First-touch in action

- Stream example $(\vec{a} = \vec{b} + s * \vec{c})$ with and without parallel initialization.
 - 2 socket sytem with Xeon X5675 processors, 12 OpenMP threads

	сору	scale	add	triad
ser_init	18.8 GB/s	18.5 GB/s	18.1 GB/s	18.2 GB/s
par_init	41.3 GB/s	39.3 GB/s	40.3 GB/s	40.4 GB/s

Note: Later Linux Kernels support "automatic NUMA balancing". With this enabled, results look better for the ser_init case.

numactl - command line tool to investigate and handle NUMA under Linux

- \$ numactl --cpunodebind 0,1,2 ./a.out
 - only use cores of NUMA node 0-2 to execute a.out
- \$ numactl --physcpubind 0-17 ./a.out
 - only use cores 0-17 to execute a.out
- \$ numactl --membind 0,3 ./a.out
 - only use memory of NUMA node 0 and 3 to execute a.out
- \$ numactl --interleave 0-3 ./a.out
 - distribute memory pages on NUMA nodes 0-3 in a round-robin fashion
 - overwrites first-touch policy

Memory- and Thread-placement in Linux

libnuma - library for NUMA control (include numa.h and link -lnuma)

• void *numa_alloc_local(size_t size);

- allocate memory on the local NUMA node

- void *numa_alloc_onnode(size_t size, int node);
 - allocate memory on NUMA node node
- void *numa_alloc_interleaved(size_t size);
 - allocate memory distributed round-robin on all NUMA nodes
- int numa_move_pages(int pid, unsigned long count, void **pages, const int *nodes, int *status, int flags);
 - migrate memory pages at runtime to different NUMA nodes

Tuning:

- Use first-touch initialization for data placement
- Parallelize all initialization loops
- Always use a static schedule

• Scalability improved a lot by this tuning on the large machine.

Work Distribution

Work Distribution

• For loop worksharing constructs the assignment of iterations to threads depends on the schedule used.

• For tasking no fixed mapping is provided.

Different iterations of the CG Solver

Zoomed in on one iteration

Case Study: CG

• Tuning:

27

 pre-calculate a schedule for the matrix-vector multiplication, so that the non-zeros are distributed evenly instead of the rows

Application Case Study

TrajSearch

- Post-processing code for dissipation element analysis
- Follows Trajectories starting at each gridcell in direction of ascending and descending gradient of an passive 3D scalar field
- Trajectories lead to a local maximum or minimum respectively
- The composition of all gridcells of which trajectories end in the same pair of extremal points defines a dissipation element
- Developed at the Institute for Combustion Technology at RWTH Aachen

Advanced OpenMP Tutorial Dirk Schmidl | IT Center RWTH Aachen University PPAM 2017, September 10, 2017, Lublin, Poland

Performance Results on Numascale system

TrajSearch

- "Computer Science View on the Code"
 - Input is a large 3D Array
 - Independent search process through the array with read only access
 - Search processes differ in length
 - Memory access is unknown, since it depends on the direction
 - Writing reached minima and maxima to a list
 - Writing points crossed during the search in a second large array

Reduce Synchronization:

- Local Buffers per Thread for the result data
- Using multi-threading optimized memory allocation, like kmp_malloc
- Replaced the Fortran random number generator with a simple RNG generating independent streams per thread

Optimization Steps (2/3)

Data placement

- Starting point of trajectories are well known
- Trajectories starting in neighbor grid cells will often need near data
- Compact thread pinning is needed to avoid thread migration
- Remote accesses cannot be avoided completely
- NUMA Caches might help to reuse data

Optimization Steps (3/3)

- Load imbalance
 - each trajectory has a different length (-> computational load imbalance)
 - the data placement is fix (-> dynamic scheduling is not sufficient)
- Numa-aware scheduling
 - start with a static load balance
 - instead of idling "help" other threads when work is done
 - to reduce interference work of foreign nodes will get iterations from the highest index backwards

Advanced OpenMP Tutorial Dirk Schmidl | IT Center RWTH Aachen University PPAM 2017, September 10, 2017, Lublin, Poland

TrajSearch on Numascale system

False-sharing

Memory Bottleneck

- There is a growing gap between core and memory performance:
 - memory, since 1980: 1.07x per year improvement in latency
 - single core: since 1980: 1.25x per year until 1986, 1.52x p. y. until 2000,
 1.20x per year until 2005, then no change on a *per-core* basis

Source: John L. Hennessy, Stanford University, and David A. Patterson, University of California, September 25, 2012

Caches

- CPU is fast
 Order of 3.0 GHz
- Caches:
 - Fast, but expensive
 - Thus small, order of MB
- Memory is slow
 - Order of 0.3 GHz
 - Large, order of GB
- A good utilization of caches is crucial for good performance of HPC applications!

Caches

- When data is used, it is copied into caches.
- The hardware always copies chunks into the cache, so called *cache-lines*.
- This is useful, when:
 - the data is used frequently (temporal locality)
 - consecutive data is used which is on the same cache-line (spatial locality)

False Sharing

- False Sharing occurs when
 - different threads use elements of the same cache-line
 - one of the threads writes to the cache-line
- As a result the cache line is moved between the threads, also there is no real dependency

• Note: False Sharing is a performance problem, not a correctness issue

Summing up vector elements

```
do i = 0, 24
#pragma omp parallel
                                                             s = s + a(i)
                                                          end do
{
#pragma omp for
 for (i = 0; i < 99; i++)
                                                          do i = 25, 49
                                                             s = s + a(i)
  {
                                                          end do
         s = s + a[i];
                                     do i = 0, 99
                                        s = s + a(i)
                                                          do i = 50, 74
} // end parallel
                                     end do
                                                             s = s + a(i)
                                                          end do
                                                          do i = 75, 99
                                                             s = s + a(i)
                                                          end do
```


Summing up vector elements

```
double s priv[nthreads];
#pragma omp parallel num threads(nthreads)
{
 int t=omp get thread num();
 #pragma omp for
 for (i = 0; i < 99; i++)
  {
        s priv[t] += a[i];
  }
} // end parallel
for (i = 0; i < nthreads; i++)
{
 s += s priv[i];
}
```


Summing up vector elements

#threads

-with false-shawing false windring false sharing

Vectorization with OpenMP

Vectorization

- SIMD = Single Instruction Multiple Data
 - Special hardware instructions to operate on multiple data points at once
 - Instructions work on vector registers
 - Vector length is hardware dependent

Vectorization

- Vector lengths on Intel architectures
 - 128 bit: SSE = Streaming SIMD Extensions

256 bit: AVX = Advanced Vector Extensions

- 512 bit: AVX-512

Data Alignment

Vectorization works best on aligned data structures.
 Good alignment

The OpenMP SIMD constructs

The SIMD construct

• The SIMD construct enables the execution of multiple iterations of the associated loops concurrently by means of SIMD instructions.

C/C++: #pragma omp simd [clause(s)] for-loops Fortran: !\$omp simd [clause(s)] *do-loops* [!\$omp end simd]

- where clauses are:
 - linear(*list[:linear-step]*), a variable increases linearly in every loop iteration
 - aligned(*list[:alignment]*), specifies that data is aligned
 - private(*list*), as usual
 - lastprivate(list), as usual
 - reduction(reduction-identifier:list) , as usual
 - collapse(n), collapse loops first, and than apply SIMD instructions

The SIMD construct

• The safelen clause allows to specify a distance of loop iterations where no dependencies occur.

The SIMD construct

The safelen clause allows to specify a distance of loop iterations where no dependencies occur.

- Any vector length smaller than or equal to the length specified by safelen can be chosen for vectorization.
- In contrast to parallel for/do loops the iterations are executed in a specified order.

The loop SIMD construct

 The loop SIMD construct specifies a loop that can be executed in parallel by all threads and in SIMD fashion on each thread.

C/C++: #pragma omp for simd [clause(s)] for-loops Fortran: !\$omp do simd [clause(s)] *do-loops* [!\$omp end do simd [nowait]]

- Loop iterations are first distributed across threads, then each chunk is handled as a SIMD loop.
- Clauses:
 - All clauses from the *loop* or SIMD-construct are allowed
 - Clauses which are allowed for both constructs are applied twice, once for the threads and once for the SIMDization.

The declare SIMD construct

• Function calls in SIMD-loops can lead to bottlenecks, because functions need to be executed serially.

Solutions:

- avoid or inline functions
- create functions which work on vectors instead of scalars

The declare SIMD construct

• Enables the creation of multiple versions of a function or subroutine where one or more versions can process multiple arguments using SIMD instructions.

C/C++: #pragma omp declare simd [clause(s)] [#pragma omp declare simd [clause(s)]] function definition / declaration

Fortran:

!\$omp declare simd (proc_name)[clause(s)]

- where clauses are:
 - simdlen(*length*), the number of arguments to process simultanously
 - linear(list[:linear-step]), a variable increases linearly in every loop iteration
 - aligned(argument-list[:alignment]), specifies that data is aligned
 - uniform(argument-list), arguments have an invariant value
 - inbranch / notinbranch, function is always/never called from within a conditional statement

Thank you for your attention! Questions?

