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NUMA Architectures

• Uniform Memory Access (UMA):

• Pro: 
 Easier to program

• Con: 
 Main Memory bandwidth is a 

bottleneck

 Limits system size
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Crossbar Interconnect

Main Memory

• Non Uniform Memory Access (NUMA):

• Pro: 
 Higher overall memory bandwidth

 Every processor adds bandwidth to the 

system

• Con: 
 Needs to be considered be programmers
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NUMA Architectures

Standard Server:

• Blade-Server

• 2 Processors

• NUMA Architecture

P1 P2

M M

Numascale System (Running at the University of Oslo):
• 4 Racks

• 144 Processors  

• 1728 Cores

• 4,6 TB Main Memory

P1 P2

P3 NU

MM

M

• 3 Sockets

• Numascale Chip

• 3D Torus Topology
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NUMA Architectures

4 Socket Intel Xeon System: 16 Socket Bull Coherence Switch (BCS) System:

Hierarchical NUMA System:

• 2 Levels of Cache-coherent 

interconnects

• different protocols on different 

levels

bandwidth latency

lokal ~ 15,1 GB/s ~ 115 ns

QPI ~ 12,8 GB/s ~ 144 ns

BCS ~ 3,4 GB/s ~ 300 ns
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Investigating NUMA topologies

numactl - command line tool to investigate and handle NUMA under Linux

• $ numactl --hardware - prints information on NUMA nodes in the system

• $ numactl --show - prints information on available recourses for the process
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Investigating NUMA topologies

lstopo - tool to show the system 

topology

• information on NUMA nodes

• information on caches

• information on devices

• part of hwloc library

• integrated in openmpi
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Optimizing NUMA accesses

Goal: Minimize the number of remote memory accesses as much as possible!

1. How are threads distributed on the system?

2. How is the data distributed on the system?

3. How is work distributed across threads?

P0A[0..24]

P1A[25..49]

P2 A[50..74]

P3 A[75..99]

T0 T1 T4 T5

T2 T3 T6 T7



Thread Placement in OpenMP
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Thread Placement in OpenMP

• Selecting the „right“ binding strategy depends not only on the topology, but 

also on the characteristics of your application.
 Putting threads far apart, i.e. on different sockets

 May improve the aggregated memory bandwidth available to your application

 May improve the combined cache size available to your application

 May decrease performance of synchronization constructs

 Putting threads close together, i.e. on two adjacent cores which possibly 

shared some caches
 May improve performance of synchronization constructs

 May decrease the available memory bandwidth and cache size

• Available strategies:

 close: put threads close together on the system

 spread: place threads far apart from each other

 master: run on the same place as the master thread
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Thread Placement in OpenMP

• Assume the following machine:

 2 sockets, 4 cores per socket, 4 hyper-threads per core

• Abstract names for OMP_PLACES:

 threads: Each place corresponds to a single hardware thread on the target 

machine.

 cores: Each place corresponds to a single core (having one or more hardware 

threads) on the target machine.

 sockets: Each place corresponds to a single socket (consisting of one or more 

cores) on the target machine.

p0 p1 p2 p3 p4 p5 p6 p7
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Thread Placement in OpenMP

• Example‘s Objective:
 separate cores for outer loop and near cores for inner loop

• Outer Parallel Region: proc_bind(spread), Inner: proc_bind(close)
 spread creates partition, compact binds threads within respective partition
OMP_PLACES={0,1,2,3}, {4,5,6,7}, ... = {0:4}:8:4   = cores

#pragma omp parallel proc_bind(spread)

#pragma omp parallel proc_bind(close)

• Example

 initial

 spread 4

 close 4

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7
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Thread Placement in OpenMP

• int omp_get_place_num(void);

 returns the place number of the place where the encountering thread is bound to

• void omp_place_get_num_procs(int place_num);

 returns the number of processors in place place_num

• void omp_get_place_proc_ids(int place_num, int *ids);

 returns the ids of processors in place place_num

• int omp_get_partition_num_places(void);

 returns the number of places of the partition of the encountering thread

• void omp_get_partition_place_nums(int *place_nums);

 returns the number of places in the partition of the encountering thread
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Case Study: CG

• Sparse Linear Algebra 

 Sparse Linear Equation Systems occur in many 

scientific disciplines.

 Sparse matrix-vector multiplications (SpMxV) 

are the dominant part in many iterative solvers 

(like the CG) for such systems.

 number of non-zeros << n*n
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Case Study: CG

• 𝑨 =

𝟏 𝟎 𝟎 𝟎
𝟐 𝟐 𝟎 𝟎
𝟎 𝟎 𝟑 𝟎
𝟒 𝟎 𝟒 𝟒

• Format: compressed row storage

 store all values and columns in arrays (length nnz)

 store beginning of a new row in a third array (length n+1)

value:

index:

row:

1 2 3 4 44

0 0 1 2 0 32

0 1 3 4 7

2

for (i = 0; i < A.num_rows; i++){
sum = 0.0;
for (nz=A.row[i]; nz<A.row[i+1]; ++nz){
sum+= A.value[nz]*x[A.index[nz]];

}   
y[i] = sum;

}  

Ԧ𝑦 = 𝐴 ∗ Ԧ𝑥
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Case Study: CG

Implementation:

• parallelize all hotspots with a parallel for construct

• use a reduction for the dot-product

• activate thread binding
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Data Placement
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Data Placement

• Important aspect on cc-NUMA systems

 If not optimal, longer memory access times and hotspots

• OpenMP does not provide support for cc-NUMA

• Placement comes from the Operating System

 This is therefore Operating System dependent

• Windows, Linux and Solaris all use the “First Touch” placement policy by 

default
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First-touch in action

Serial code: all array elements are allocated in the memory of the 

NUMA node containing the core executing this thread

double* A;

A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]

T0



Advanced OpenMP Tutorial

Dirk Schmidl  |  IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

19

First-touch in action

Serial code: all array elements are allocated in the memory of the 

NUMA node containing the core executing this thread

double* A;

A = (double*)

malloc(N * sizeof(double));

omp_set_num_threads(2);

#pragma omp parallel for

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N/2] A[N/2] … A[N]

T0 T1
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First-touch in action

• Stream example (𝒂 = 𝒃 + 𝐬 ∗ 𝒄) with and without parallel initialization.
 2 socket sytem with Xeon X5675 processors, 12 OpenMP threads

copy scale add triad

ser_init 18.8 GB/s 18.5 GB/s 18.1 GB/s 18.2 GB/s

par_init 41.3 GB/s 39.3 GB/s 40.3 GB/s 40.4 GB/s

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,N-1]

b[0,N-1]

c[0,N-1]

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,(N/2)-1]

b[0,(N/2)-1]

c[0,(N/2)-1]

ser_init:

par_init:

MEM

MEM

a[N/2,N-1]

b[N/2,N-1]

c[N/2,N-1]

Note: Later Linux Kernels support „automatic NUMA balancing“. With this

enabled, results look better for the ser_init case.
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Memory- and Thread-placement in Linux

numactl - command line tool to investigate and handle NUMA under Linux

• $ numactl --cpunodebind 0,1,2 ./a.out

 only use cores of NUMA node 0-2 to execute a.out

• $ numactl --physcpubind 0-17 ./a.out

 only use cores 0-17 to execute a.out

• $ numactl --membind 0,3 ./a.out

 only use memory of NUMA node 0 and 3 to execute a.out

• $ numactl --interleave 0-3 ./a.out

 distribute memory pages on NUMA nodes 0-3 in a round-robin fashion

 overwrites first-touch policy
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Memory- and Thread-placement in Linux

libnuma - library for NUMA control

(include numa.h and link -lnuma)

• void *numa_alloc_local(size_t size);

 allocate memory on the local NUMA node

• void *numa_alloc_onnode(size_t size, int node);

 allocate memory on NUMA node node

• void *numa_alloc_interleaved(size_t size);

 allocate memory distributed round-robin on all NUMA nodes

• int numa_move_pages(int pid, unsigned long count, void 

**pages, const int *nodes, int *status, int flags);

 migrate memory pages at runtime to different NUMA nodes
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Case Study: CG

Tuning:

• Use first-touch initialization for data placement

• Parallelize all initialization loops

• Always use a static schedule

• Scalability improved a lot by this tuning on the large machine.
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Work Distribution
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Work Distribution

• For loop worksharing constructs the assignment of iterations to threads depends 

on the schedule used.

• For tasking no fixed mapping is provided.

#pragma omp parallel for schedule(...)
for (i=0 ; i < 40 ; i++){

A[i]=42;
}

static

dynamic

guided
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Case Study:CG

• Different iterations of the CG Solver

• Zoomed in on one iteration
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Case Study: CG

• Tuning:
 pre-calculate a schedule for the 

matrix-vector multiplication, so that 

the non-zeros are distributed evenly 

instead of the rows
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Application Case Study
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TrajSearch

• Post-processing code for dissipation element analysis

• Follows Trajectories starting at each gridcell in direction of ascending and 

descending gradient of an passive  3D scalar field

• Trajectories lead to a local maximum or minimum respectively 

• The composition of all gridcells of which trajectories end in the same pair of 

extremal points defines a dissipation element

• Developed at the Institute for Combustion Technology at RWTH Aachen
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Performance Results on Numascale system
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TrajSearch

• “Computer Science View on the Code”
 Input is a large 3D Array

 Independent search process through the array with read 

only access

 Search processes differ in length

 Memory access is unknown, since it depends on the 

direction 

 Writing reached minima and maxima to a list

 Writing points crossed during the search in a second 

large array

x

y

z
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Optimization Steps (1/3)

Reduce Synchronization:

• Local Buffers per Thread for the result data

• Using multi-threading optimized memory allocation, like kmp_malloc

• Replaced the Fortran random number generator with a simple RNG generating 

independent streams per thread
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Optimization Steps (2/3)

• Data placement 
 Starting point of trajectories are well known

 Trajectories starting in neighbor grid cells will often need near data

 Compact thread pinning is needed to avoid thread migration

 Remote accesses cannot be avoided completely 

 NUMA Caches might help to reuse data

x

y

z

x

y

z
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Optimization Steps (3/3)

• Load imbalance
 each trajectory has a different length (-> computational load imbalance)

 the data placement is fix (-> dynamic scheduling is not sufficient)

• Numa-aware scheduling
 start with a static load balance

 instead of idling “help” other threads when work is done

 to reduce interference work of foreign nodes will get iterations from the highest index 

backwards 
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TrajSearch on Numascale system
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False-sharing
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Memory Bottleneck

• There is a growing gap between core and memory performance:
 memory, since 1980: 1.07x per year improvement in latency

 single core: since 1980: 1.25x per year until 1986, 1.52x p. y. until 2000,

1.20x per year until 2005, then no change on a per-core basis

Source: John L. Hennessy, Stanford University, and David A. Patterson, University of California, September 25, 2012
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Caches

• CPU is fast
 Order of 3.0 GHz

• Caches:
 Fast, but expensive

 Thus small, order of MB

• Memory is slow
 Order of 0.3 GHz

 Large, order of GB

• A good utilization of caches is

crucial for good performance of HPC 

applications!

core

memory

off-chip cache

on-chip cache
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Caches

• When data is used, it is copied 

into caches.

• The hardware always copies chunks

into the cache, so called cache-lines.

• This is useful, when:
 the data is used frequently (temporal locality)

 consecutive data is used which is on the 

same cache-line (spatial locality)

Core

memory

on-chip cache

Core

on-chip cacheon-chip cache

mem. controller



Advanced OpenMP Tutorial

Dirk Schmidl  |  IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

40

False Sharing

• False Sharing occurs when
 different threads use elements of the 

same cache-line

 one of the threads writes to the cache-line

• As a result the cache line is moved between 

the threads, also there is no real dependency

• Note: False Sharing is a performance problem, not a correctness issue

Core

memory

on-chip cache

Core

on-chip cacheon-chip cache

mem. controller
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Summing up vector elements

#pragma omp parallel              

{

#pragma omp for

for (i = 0; i < 99; i++)

{     

s  = s   + a[i];

}

} // end parallel

do i = 0, 99

s = s + a(i)

end do

do i = 0, 24
s = s + a(i)

end do

do i = 25, 49
s = s + a(i)

end do

do i = 50, 74
s = s + a(i)

end do

do i = 75, 99
s = s + a(i)

end do
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Summing up vector elements

double s_priv[nthreads];

#pragma omp parallel num_threads(nthreads)              

{

int t=omp_get_thread_num();

#pragma omp for

for (i = 0; i < 99; i++)

{      

s_priv[t]  += a[i];

}

} // end parallel

for (i = 0; i < nthreads; i++)

{

s += s_priv[i];

}
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Summing up vector elements

• no performance benefit for more 

threads

• Reason: false sharing of s_priv

• Solution: padding so that only one 

variable per cache line is used

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10 11 12

M
FL

O
P

S

#threads

with false sharing

1 2 3 4 …

1 2 …3

Standard

With padding

cache line 1 cache line 2

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10 11 12

M
FL

O
P

S

#threads

with false sharing without false sharing



Vectorization with OpenMP
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Vectorization

• SIMD = Single Instruction Multiple Data
 Special hardware instructions to operate on multiple data points at once

 Instructions work on vector registers

 Vector length is hardware dependent

double a[4],b[4],c[4];
…

for(i=0 ; i < 4 ; i++)
{

a[i]=b[i]+c[i];
}

a[0]

c[0]

b[0]

=

+

Step 1

a[1]

c[1]

b[1]

=

+

Step 2

a[2]

c[2]

b[2]

=

+

Step 3

a[3]

c[3]

b[3]

=

+

Step 4

b[0],b[1]

c[0],c[1]

a[0],a[1]

=

+

b[2],b[3]

c[2],c[3]

a[2],a[3]

=

+

Step 2Step 1

Sequential Vectorized
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Vectorization

• Vector lengths on Intel architectures

 128 bit: SSE = Streaming SIMD Extensions

 256 bit: AVX = Advanced Vector Extensions

 512 bit: AVX-512

2 x double

4 x float

4 x double

8 x float

8 x double

16 x float
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Data Alignment 

• Vectorization works best on aligned data structures.

Address:     0          8           16         24          32         40        48           56

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]Data:

Vectors:

Address:                  8           16         24          32         40        48           56         64

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]Data:

Vectors:

Address:          4          12         20          28         36         44         52          60

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]Data:

Vectors:

Good alignment

Bad alignment

Very bad alignment
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Ways to Vectorize

Compiler
auto-vectorization

Explicit Vector Programming
(e.g. with OpenMP)

Inline Assembly
(e.g. )

Assembler Code
(e.g. addps, mulpd, …)

easy

explicit



The OpenMP SIMD constructs
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The SIMD construct

• The SIMD construct enables the execution of multiple iterations of the associated 

loops concurrently by means of SIMD instructions.

• where clauses are:
 linear(list[:linear-step]), a variable increases linearly in every loop iteration

 aligned(list[:alignment]), specifies that data is aligned

 private(list), as usual

 lastprivate(list) , as usual

 reduction(reduction-identifier:list) , as usual

 collapse(n), collapse loops first, and than apply SIMD instructions

C/C++:
#pragma omp simd [clause(s)]

for-loops

Fortran:
!$omp simd [clause(s)]

do-loops
[!$omp end simd]
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The SIMD construct

• The safelen clause allows to specify a distance of loop iterations where no 

dependencies occur.

double a[6],b[6];
…

for(i=2 ; i < 6 ; i++)
{

a[i]=a[i-2]*b[i];
}

a[2]

b[2]

a[0]

=

*

Step 1

a[3]

b[3]

a[1]

=

*

Step 2

a[4]

b[4]

a[2]

=

*

Step 3

a[5]

b[5]

a[3]

=

*

Step 4

a[0],a[1]

b[2],b[3]

a[2],a[3]

=

*

a[2],a[3]

b[4],b[5]

a[4],a[5]

=

*

Step 2Step 1

Sequential Vector length 128-bit
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The SIMD construct

• The safelen clause allows to specify a distance of loop iterations where no 

dependencies occur.

• Any vector length smaller than or equal to the length specified by safelen can be 

chosen for vectorization. 

• In contrast to parallel for/do loops the iterations are executed in a specified order.

double a[6],b[6];
…

for(i=2 ; i < 6 ; i++)
{

a[i]=a[i-2]*b[i];
}

a[0],a[1],a[2],a[3]

b[2],b[3],b[4],b[5]

a[2],a[3],a[4],a[5]

=

*

Step 1

Vector length 256-bit

a[0],a[1]

b[2],b[3]

a[2],a[3]

=

*

a[2],a[3]

b[4],b[5]

a[4],a[5]

=

*

Step 2Step 1

Vector length 128-bit
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The loop SIMD construct

• The loop SIMD construct specifies a loop that can be executed in parallel by all 

threads and in SIMD fashion on each thread.

• Loop iterations are first distributed across threads, then each chunk is handled as 

a SIMD loop.

• Clauses:
 All clauses from the loop- or SIMD-construct are allowed

 Clauses which are allowed for both constructs are applied twice, once for the threads and 

once for the SIMDization.

C/C++:
#pragma omp for simd [clause(s)]

for-loops

Fortran:
!$omp do simd [clause(s)]

do-loops
[!$omp end do simd [nowait]]
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The declare SIMD construct

• Function calls in SIMD-loops can lead to bottlenecks, because functions need to 

be executed serially.

for(i=0 ; i < N ; i++)
{

a[i]=b[i]+c[i];

d[i]=sin(a[i]);

e[i]=5*d[i];

}

SIMD lanes Solutions:
• avoid or inline 

functions
• create functions 

which work on 
vectors instead of 
scalars 
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The declare SIMD construct

• Enables the creation of multiple versions of a function or subroutine where one or 

more versions can process multiple arguments using SIMD instructions.

• where clauses are:
 simdlen(length), the number of arguments to process simultanously

 linear(list[:linear-step]), a variable increases linearly in every loop iteration

 aligned(argument-list[:alignment]), specifies that data is aligned

 uniform(argument-list), arguments have an invariant value

 inbranch / notinbranch, function is always/never called from within a conditional statement

C/C++:
#pragma omp declare simd [clause(s)]
[#pragma omp declare simd [clause(s)]]

function definition / declaration

Fortran:
!$omp declare simd (proc_name)[clause(s)]



Thank you for your attention!

Questions?


