Dirk Schmidl
schmidl@itc.rwth-aachen.de

Thanks to the following people for providing parts of the slides:
- Christian Terboven (RWTH Aachen)

- Sandra Wienke (RWTH Aachen)

- Michael Klemm (Intel)

IT Center

Core concept

H RWTHAACHEN
28 1t contr UNIVERSITY

The OpenMP Execution Model

Fork and Join Model
Master
Thread
Parallel Worker
region Threads
Parallel Worker
region Threads
3 Advanced OpenMP Tutorial Rm

Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland IT Center

Defining Parallelism in OpenMP

A parallel region is a block of code executed by
all threads in the team

#pragma omp parallel [clause[[,] clause] ...]
{

"this code is executed in parallel"

} // End of parallel section (note: implied barrier)

!Somp parallel [clause[[,] clause] ...]

"this code is executed in parallel"

!Somp end parallel (note: implied barrier)

Advanced OpenMP Tutorial Rm
Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland IT Center

The Worksharing Constructs

#pragma omp for || #pragma omp sections || #pragma omp single
{ { {

\ e \ e \

!SOMP DO !SOMP SECTIONS !SOMP SINGLE

! $OMP . ﬁND DO ! SOMP END . SECTIONS ! SOMP END . SINGLE

The work is distributed over the threads
Must be enclosed in a parallel region
Must be encountered by all threads in the team, or none at all
No implied barrier on entry
Implied barrier on exit (unless the nowait clause is specified)

- / s
RWTH

v
v
v
v
v
v

()]

Advanced OpenMP Tutorial
Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland

IT Center

The OpenMP Memory Model

private
memor

& All threads have access

SHvER to the same, globally

N shared memory

€ Data in private memory
is only accessible by the
thread owning this
memory

€ No other thread sees
the change(s) in private
memory

€ Data transfer is through
shared memory and is
100% transparent to the
application

6 Advanced OpenMP Tutorial
Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland

IT Center

Scoping Rules

« Managing the Data Environment is the challenge of OpenMP.

« Scoping in OpenMP: Dividing variables in shared and private:
— private-list and shared-list on Parallel Region
— private-list and shared-list on Worksharing constructs
— General default is shared for Parallel Region, firstprivate for Tasks.
— Loop control variables on for-constructs are private
— Non-static variables local to Parallel Regions are private
— private: A new uninitialized instance is created for each thread
= firstprivate: Initialization with Master’s value
= lastprivate: Value of last loop iteration is written back to Master
— Static variables are shared

7 Advanced OpenMP Tutorial Rm

Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland IT Center

Privatization of Global/Static Variables

« Global / static variables can be privatized with the threadprivate directive
— One instance is created for each thread
= Before the first parallel region is encountered K
= Instance exists until the program ends 0
= Does not work (well) with nested Parallel Region ge \G
— Based on thread-local storage (TLS) \)

* Qv
= TIsAlloc (Win32-Threads), pthread_key_create@QQThre’s@\ eyword thread
(GNU extension) 6 \‘
\

S
MO
0“6

\’

xO S

CIC++ 6? Fortran
static ini@ SAVE INTEGER :: 1
i @ _hreadprivate (1) !'Somp threadprivate (i)

8 Advanced OpenMP Tutorial Rm
Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland IT Center

Gotcha’s

* Need to get this right
— Part of the learning curve
* Private data is undefined on entry and exit
— Can use firstprivate and lastprivate to address this
« Each thread has its own temporary view on the data

— Applicable to shared data only
— Means different threads may temporarily not see the same value for the same variable ...

— Let me explain

9 Advanced OpenMP Tutorial Rm

Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland IT Center

The Flush Directive

Thread A Thread B
X =0
. while (X == 0)
. {
E “Wait”
}
X =1

If shared variable X is kept within a register, the modification
may not be made visible to the other thread(s)

10 Advanced OpenMP Tutorial
Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland IT Center

RWTH

The Flush construct

#pragma omp flush [(list)] 1Somp flush [(list)]

« Strongly recommended: do not use this directive
— ... unless really necessary. Really ©.
— Could give very subtle interactions with compilers
— If you insist on still doing so, be prepared to face the OpenMP language lawyers

 Implied on many constructs
— A good thing
— This is your safety net

11 Advanced OpenMP Tutorial Rm

Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland IT Center

The OpenMP Barrier

Several constructs have an implied barrier

— This is another safety net (has implied flush by the way)

In some cases, the implied barrier can be left out through the “nowait” clause
This can help fine tuning the application

— But you’d better know what you’re doing

The explicit barrier comes in quite handy then

#pragma omp barrier !Somp barrier

12 Advanced OpenMP Tutorial Rm

Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland IT Center

The Nowait Clause

« To minimize synchronization, some directives support the optional nowait clause
— If present, threads do not synchronize/wait at the end of that particular construct
* In C, it is one of the clauses on the pragma

 In Fortran, it is appended at the closing part of the construct

#pragma omp for nowait |!$omp do
} 'Somp end do nowait
¢ i achmia | 1 Comer RTH Acchen Uriversiy RWTH

PPAM 2017, September 10, 2017, Lublin, Poland IT Center

Mutual exclusion

« A Critical Region is executed by all threads, but by only one thread simultaneously
(Mutual Exclusion).

C/C++

fpragma omp critical (name)

{

structured block

}

« OpenMP also provides locks und locking routines
— omp_lock_t
— omp_init_lock()
— omp_set_lock()
— omp_unset_lock()
— omp_test_lock()
— omp_init_lock()

14 Advanced OpenMP Tutorial Rm

Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland IT Center

Performance Optimization for Locking

Don’t use locks ©

Fine-grained locking

— Push locks towards the finest granularity of data access (if possible)

— May avoid mutual exclusion of lengthy sequences of execution
Lock-free data structures

— Don’t use locks, but use atomic instruction of the machine

— Advice: do not attempt to implement such a data structure yourself
Use transactional memory

— Speculate on the mutual exclusion (increased parallelism if no conflicts)
— Pay extra if a conflict happens

15 Advanced OpenMP Tutorial
Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland IT Center

RWTH

Fine-grained Locking

« Example: hash table with linked lists for buckets
» Tradeoff:

— (Expected) degree of 7"
parallelism 4 _’_’ _’_» NULL
— Number of individual
locks required
— Implementation complexity o —’—V —’—V —’—> NULL

« Can be combined with TM
— See next slide — NULL

—> _'_E _’_> NULL]

\. /

16 Advanced OpenMP Tutorial
Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland IT Center

Transactional memory

Lock transfer latencies
(lock overhead) and
serialized execution

Time

=)

Concurrent (optimistic)
execution, no lock transfer
latencies (less lock
overhead)

17 Advanced OpenMP Tutorial
Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland

IT Center

Lock hints in OpenMP

 Lock hints can help the Runtime to
choose the best implementation of a
lock.

* Hints are:
— omp_lock_hint_none
— omp_lock_hint_uncontended
— omp_lock_hint_contended
— omp_lock _hint_nonspeculative
— omp_lock_hint_speculative

 Hints can be combined with + or | .

C/C++

omp lock t 1lck;

omp init lock with hint (&lck);
fpragma omp parallel

{
omp set lock(&lck);

/* mutual exclusion here..

omp unset lock(&lck);

}
omp destroy lock(&lck);

.x/

C/C++

#fpragma omp critical hint (...)

{

18 Advanced OpenMP Tutorial
Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland

RWTH

IT Center

Tools for OpenMP

H RWTHAACHEN
28 1t contr UNIVERSITY

Data race

- Data Race: the typical OpenMP programming error, when:
— two or more threads access the same memory location, and
— at least one of these accesses is a write, and
— the accesses are not protected by locks or critical regions, and

— the accesses are not synchronized, e.g. by a barrier.

* Non-deterministic occurrence: e.g. the sequence of the execution of parallel loop
iterations is non-deterministic and may change from run to run
* In many cases private clauses, barriers or critical regions are missing

« Data races are hard to find using a traditional debugger

— Use the Intel Inspector XE or similar tool

20 Advanced OpenMP Tutorial Rm

Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland IT Center

Inspector XE

 Runtime detection of data races

rOo01ti3 (¥ ¥
¥ Locate Deadlocks and Data Races Intel Inspector XE 2011
" Analysis Type || F& Collection Log
% | Filters Sort~ U F
ID & o Problem Sources Modules State Severity
: A Error 1 itemi(s)
Problem
Data race 1 item(s)
Source
pi.c 1 itemis)
Module
pi.exe 1 item(s)
State
Mew 1 itemi(s)
- _®Ww __ _§ Suppressed
Code Locations [Code Locations |/ Timeline § Mot suppressed 1 itemis)
]n] Description & Source Function Module -l Investigated
X1 Read 5 pic:71 CalcPi pi.exe Mot investigated 1item(s)
69 {
78 fX = fH * {{double)i + B.5);
71 fSum += F(fX);
72 }
73 return fH * fS5um;
X2 Write Eﬁpi.c:?l CalcPi pi.exe
&9 {
78 fX = fH * {{double)i + B.5);
71 fSum += F(fX);
72 }
73 return fH * fSum; E]

21 Advanced OpenMP Tutorial Rm

Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland IT Center

Intel VTune Amplifier XE

« Performance Analyses for
— Serial Applications
— Shared Memory Parallel Applications

« Sampling Based measurements

* Features:
— Hot Spot Analysis
— Concurrency Analysis
— Wait

— Hardware Performance Counter Support

22 Advanced OpenMP Tutorial Rm

Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland IT Center

Performance tools - VTune

Grouping: [Functionj Call Stack | 4 | [Thread create stack | v |

Function / Call Stack CPU Timew k4 Module Function {Full) 1 stackis) selected. Viewing <] 1ofl [
P> main 10.672s [N stream.exe main Current stack is 100.0% of selection
P__kmp_wait_sleep 2.438s [libiemp5.s0 _ kmp_wait_sleep | 100.0% (14.840s of 14.840s) |
P__kmp_x86_pause 1.100s @ libiomp5.s0 _ kmp_x86_pause Unk neee
P__kmp_execute_tasks 0.400s(libiomp5.s0 _ kmp_execute_tasks [Unknown]
D_kmp_‘,ﬂeld 0.120s]| libiomp5.s0 _ kmp_yield
D_sched_‘,rield 0.100s]| libc-2.12s0 _ sched_yield
D[Iibtpsstonl.sn] 0.010s| libtpsstool.so [libtpsstool so]

Selected 0 row(s): [Unknown] [Unknown] [Unknown]
[(.< TR

0.95 1s 1.1s

= |OMP Worker Threa | Source ” Assembly | D E|
@ [OMP Worker Threa —
= [oWPiorker Threa Line Source CPU Time i [~]
o 28 #etse
239 #pragma omp parallel for 0.010s]
248 for (j=B; j<N; j++) 0.140s0
CPU Usage

242 #Fendif
243 times[2][k] = mysecond() - times[2][K]: =
244 u
245 times[3][k] = mysecond();
246 #ifdef TUNED E
247 tuned STREAM Triad(scalar); E|_
248 #else —
24% #pragma omp parallel for
258 for (j=B; j<N: j++) 0.160sM@
251 a[j] = b[j]+scalar*c[]]: 2.751s [
252 #endif
253 times[3]1[k] = mysecend() - times[3][k];
254 }
o Selected 1 row(s): 2.790s [+]

@ T B @ D)

23 Advanced OpenMP Tutorial Rm
Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland IT Center

Performance tools - Score-P

periscope [/JTVIRE
L W o
UN

Event traceS (OTFZ) Ca”-path prOflleS . Onllne o Gerr.nja_nﬁesearlchS:houl
CUBE4’ TAU Interface C for Simulation Sciences

TECHNISCHE

Hardware counter (PAPI, rusage) S s

, DRESDEN
Score-P measurement infrastructure

Adapters

3
+ 4+ 4+ ¢ m

TAU Technische Universitat Minchen

Compiler OPARI 2

instrumentor O

Instrumentation wrapper

UNIVERSITY OF OREGON

24 Advanced OpenMP Tutorial
Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland IT Center

Performance Tools Score-P / Cube

Cube 3.4 QT: epik ring 4 sumfepitome.cube (on cluster2.rz.RWTH-Aachen.DE)

File Display Topology Help

1. Metric tree |Absolute |Absolute ¢ [N Absolute

2_ Ca” tree Metric tree Call tree | Flat view System tree | Box Plot | Topolo
- ® 51 Visits M| = [0.000291 main [| EF O - Linux Intel

3 . TO p 0 I 0 g y tree — [] 0 Collective synchronizations] 4.448194 MPI_|nit B [- linuxbdc03

— [] 0 P2P send synchronizations
-] 0P2P recv synchronizations
— [] 0 Collective exchange communic;

® Al I Vl eWS are — [0 Collective communications as s

—] 0 Collective communications as d

COUpled from Ieft tO — [8 P2P send communications

0.000001 MPI_Comm_size [1.111744 Process 1
0.000094 MPI_Send [1.110085 Process 2
[18.008817 MPI_Recv [1.113481 Process 3
O 7.002886 do_work

O 3.001478 MPI_Finalize

0.000003 MPI_Comm_rank E [1.112883 Process 0

- 8 P2P recv communications

rl g h t: [] 0 Collective bytes outgoing
.] 0 Collective bytes incomin
1. ChOOse a metrlc —.32F’2F’bytesysem °
. . . — [32 P2P bytes received
° -> thIS metrlc IS —] 0 MPI file bytes transterred
-] 0.000000 OMP thread fork time
shown for all L[] 0.000000 OMP thread managem
. = 32.461765 Time

functions

2. choose afunctionj s | B |
. . (<] il il B B il B |

¢ _> the rlght VIeW 0.000000... 32.461765 (... 32.461765...§|0.000000... 4.448194 (1... 32.461765...

shows the — —

distribution over _
processes Total execution Out of these 4.

time is 32 sec. sec. are spent sec is spent by
in MPL_Init(). every process.

25 Advanced OpenMP Tutorial Rm

Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland IT Center

Out of these 1.1

Performance Tools Score-P / Vampir

00s 05s 10s 15s 20s 2.5

« The Timeline gives a detailed view of

all events. =
* Regions and Messages of all e
Processes and Threads are shown. e N
O
« Zoom horizontal or vertical for more L
detailed information. Thread 12
» Click on a message or region for Proces 2
specific details. Thresd 21
I AR AR L a
o b it b by
==l HTIT INERNN 1N
i .I‘ll Ill I ll
Wt | NEmn e
26 Advanced OpenMP Tutorial Rwrl.l

Dirk Schmidl | IT Center RWTH Aachen University
PPAM 2017, September 10, 2017, Lublin, Poland IT Center

Thank you for your attention!

Questions?

eeeeeeee

