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Discovering Communities in Social & Bio-networks

Clustering implies modularity
Functional modularity imposes 
natural boundary lines between 
communities.

Discovering community structure 
uncovers functionality

Bio (left) and social  (right) networks are driven by functionality 3



Using Community Detection for Studying 
Alzheimer’s Disease 
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Why take a new approach to so well studied subject? 

Because we barely understand it at all 

•400+ clinical trials 

•200+ compounds

•One with slight reduction of symptoms (Memantine) and no 
preventative drugs

•Genetic linkage studies indicate multiple molecular systems 
involved in pathology

•For most cases small contributions from many molecules

•What is perceived as AD is clouded by other age-related 
pathologies
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Overview of datasets and approach

5
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Motivation for Specialized Algorithms
➢Biological and social networks have high level of noise and 

therefore have incorrect or missing links 

➢Biological or social functions are accomplished by 
communities of interacting molecules/cells or people

➢Membership in these communities may overlap when humans 
or biological components are involved in multiple functions

Addition of 
noise & 

unclustered links

Multi-community nodes
Red dot = connection between nodes
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Computational Patterns in Network Science

Physics Interactions
Regular grid embedded in space, 
all interaction are local.
Regular computational stencils.

Network interactions
Links are independent of nodes’ 
locations, interactions are global. 
Irregular computational stencils.
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E. David, J. Kleinberg, Networks, Crowds, and Markets: Reasoning about a Highly Connected World. CUP (2010). 
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SpeakEasy Algorithm
➢ Novelty: Identifies communities using top-down and bottom-up approaches 

simultaneously.  Specifically, nodes join communities based on their local 
connections and global information about the network structure.

➢ Label propagation algorithm: each node updates its status to the label 
found among nodes connected to it which has the greatest specificity, i.e., 
the actual number of times this label is present in neighboring nodes minus 
its expected number based on its global frequency.

➢ Consensus clustering: the partition with the highest average adjusted 
Rand Index among all other partitions is selected as the representative 
partition to get robust community structure. 

➢ Overlapping communities: overlapping communities can be obtained with 
co-occurrence matrix. Multi-community nodes are selected as nodes which 
co-occur with more than one of the final clusters with greater than a user-
selected threshold.
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Visual Example of SpeakEasy Clustering

 Labels are represented by color tags

 Multi-community nodes are tagged with multiple colors

A. Each node is assigned with random 
unique label (before clustering)

B. Nodes with the same labels belong to 
the same community (after clustering)
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Color-coded community ID

➢ Algorithm identifies communities
though evolution of common labels. 

➢ After a certain number of iterations of 
label propagation or if none of the 
nodes updates its labels in the given
iteration, nodes with the same label
will be clustered into the same 
community. 

➢ However, because the clustering is
fast and parameter-free, running the 
algorithm multiple times, we get an
assessment of the robustness of the 
clusters and the identity of multi-
community nodes.

Correlation matrix after clustering

N
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Nodes

Clustering Workflow

C. Gaiteri, M. Chen, B.K. Szymanski, et al. Scientific Reports 5:16361 (2015)
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➢Run SpeakEasy multiple times 
(e.g. 100x).

➢For all pairs of nodes (i, j) the 
“co-occurrence” matrix records 
number of times they land in 
same cluster.

➢This is useful for both identifying 
robust clusters and for finding 
nodes that link multiple 
communities together.

Co-occurrence matrix

Clusters in this matrix show 
nodes that cluster across 
many initial conditions

Strong non-clustered/ off-
diagonal elements show 
multi-community nodes
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Identifying Multi-community Nodes

C. Gaiteri, M. Chen, B.K. Szymanski, et al. Scientific Reports  5:16361 (2015)
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Application to Protein-protein Interaction 
Datasets

A. The high throughput interaction dataset from Gavin et al. has nodes colored according 

to protein complexes found in the Saccharomyces Genome Database (SGD).

B. The communities identified with SpeakEasy on the high throughput interaction dataset 

from Gavin et al.
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High-Level Approach to Parallelizing SpeakEasy

• Partition the data (nodes) between processors
• Perform label propagation on each partition in 

parallel
• Synchronize at the end of each label

propagation iteration
• Exchange the global label frequencies

information among the processors
• Extract community data from label histories

(also in parallel)

PPAM, Lublin, Poland, September 12, 2017
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Partitioning nodes for parallel 
processing

PPAM, Lublin, Poland, September 12, 2017

• Each processor gets a (roughly) 
the same number of
nodes

• Colors correspond to 
processors

• A lighter shade is used
for external shadow
nodes

• Fine dashed line surrounds 
internal nodes

• Wider spaced dashed line 
encloses the external shadow 
nodes 

• Solid line denotes all nodes 
associated with the processor 
(internal and external shadow
nodes
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A Traditional Edge List File Is Not the 
Best Format for Parallel I/O

PPAM, Lublin, Poland, Septermber 12, 2017

• An edge list file is a text file with a variable line length
- cannot be efficiently partitioned for parallel I/O since file offsets for each 

processor are not known before reading the entire file
- redundant due to storing multiple copies of the source node id

• Edges in the file are not guaranteed to be arranged in any particular 
order (e.g., not grouped by the source node id)
- each processor needs to read the entire edge list file sequentially, 

filtering out the nodes which belong to other processors
- I/O requests for the same data from different processors are not 

guaranteed to be grouped together resulting in poor scalability
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Designing a Parallel Efficient Edge 
List Format 

PPAM, Lublin, Poland, Septermber 12, 2017

• Store edges in a format with a fixed 
field size. All values are either fixed 
size text (e.g., 10 characters per 
value) or fixed size binary integer 
(e.g., 4 bytes per value)

• Group all edges with the same source 
node id together

• Only store the destination node id in 
the edge list file

• Store the source node id (only once!) 
in a supplemental TOC file along with 
an offset to the first edge of this 
source node id in the edge list file

• The TOC file also has a fixed field size
([Source node id] [Edge list file offset])
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Efficient Parallel I/O and Scalability 

PPAM, Lublin, Poland, Septermber 12, 2017

• Each processor:
- computes its preliminary edge list file 

offsets based on the file size (field size 
is fixed!)

- adjusts the offsets to the source node id 
boundaries by reading the TOC file

- reads the edges
• Each processor reads only a section of 

the edge list file (an integer number of 
source node groups)

• Each edge from the edge list file is 
read only by one processor

• Each processor gets the same number 
of edges (up to the adjustment to the 
source node id group boundaries) 
which provides a balanced load for the 
O(m) label propagation algorithm
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Propagation of Label Updates

PPAM, Lublin, Poland, Septermber 12, 2017

• A shadow node ( ௙
௉ೖ) fully 

represents its corresponding 
original node ( 𝑓) in the 
external partition 

• Multiple connections are 
replaced by a combination of 
a single link between the 
original and the shadow 
nodes and the 
corresponding number of 
edges between the shadow 
node and the nodes in the 
related partition

• Label updates are sent along
the virtual edge ( 𝑓, ௙

௉ೖ)
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Computing Label Counts
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• Label history list for each 
node has a fixed 
configurable size

• Label counts are computed 
from individual label history 
lists

• The same label can occur 
more than once in the 
history of a node

• Label count values are
stored in partitioned global 
label count tables (one 
table per processor)

• A combination of all 
individual partitioned count 
tables can be thought of as 
the global label count table
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Collecting and Maintaining Label 
Updates

PPAM, Lublin, Poland, Septermber 12, 2017

• Each processor has a
list that tracks label
count updates for all
labels found in
history lists of
nodes which
belong to internal
and external
partitions

• At each iteration a
new label is added
to the history list, and
the oldest label is
deleted

• If the accumulated change in label count 
across all nodes during a certain iteration is 
zero, there is no need to keep this update
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Test Networks
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Network # of nodes # of edges

com-Youtube ≈ 1.13×106 ≈ 2.99×106

com-LiveJournal ≈ 3.99×106 ≈ 34.68×106

methylation 5,000 25×106

• YouTube – a platform for sharing video with certain features (e.g., 
the ability to like certain videos or subscribe to certain channels) 
characteristic of social networks. Edges correspond to friendship 
relations which users can establish.

• LiveJournal – on-line blog. The network of users is connected to 
each other through a self-declared friendship relationship.

• Methylation – describes the distribution of methyl groups on DNA 
(which helps to control which genes are transcribed). Arranged 
linearly along DNA, so in the same chromosome all sites should 
be placed into the same initial partition, as they are more likely to 
show interactions.
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• Standard hyper-threaded 
Ubuntu1 Linux operating 
system

• OpenMPI4 high performance 
computing library

Testing Environment

PPAM, Lublin, Poland, Septermber 12, 2017

• High-performance shared-
memory machine (off-the-shelf 
Silicon Mechanics2 Rackform
iServ R420.v4)

• 32 cores organized as four 
Intel3 Xeon™ E5-4620v2 (2.6 
GHz, 8-core, 20 MB Cache) 

• Shared 1 TB of Random 
Access Memory (RAM)
(32 x 32 GB DDR3-1600 ECC 
Registered 4R DIMMs)
running at 1600 MT/s Max 

1 Ubuntu and Canonical are registered trademarks of Canonical Ltd.
2 Silicon Mechanics and the Silicon Mechanics logo are registered trademarks of Silicon Mechanics, Inc.
3 Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. 
4 The Open MPI Project.
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Performance Results

Social networks

A bio-medical network
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Work in Progress

PPAM, Lublin, Poland, Septermber 12, 2017

• More advanced partitioning methods to minimize the number of 
edges going across the processor boundaries

• A wider selection of networks to test the performance of the 
algorithm

• OpenMPI + OpenMP1 for even 

greater parallel efficiency

• Update the code for
distributed memory
supercomputers

• Tackle billion-scale
networks by conducting
additional experiments on the
IBM® System Blue Gene®/Q

1 OpenMP ARB (Architecture Review Boards)
Image from http://www.timesunion.com/business/article/RPI-s-Amos-a-fast-study-4867074.php
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➢ The spread of the news stories exhibits an emergent pattern in 
online media. Can we predict viral news?

➢ We use survival analysis to model the spread of news events from 
one online media site to its neighbors.

News Events in Online Media

The instantaneous rate of the infection 
from node u to node v in a graph:

#news events per site 
follows the power-law
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Survival Analysis
➢ The stochastic propagation model [Kempe 2003]:

Infection delay through every link is independent.
Once a node has been infected, it won’t be infected again.

➢ According to the survival analysis [Infopath 2013]

where the survival function S(τ) denotes the probability                   
that NO infection happens within the period of time τ. 

Hazard Function

PPAM, Lublin, Poland, September 12, 2017
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Nodes vs. Edges

Influence Vector

Selectivity Vector

➢ Instead of modeling the links, we focus on the nodes. The number of 
latent variable becomes linear in the number of nodes.

➢ Topic Model: where Auk is the influence of node 
u on topic kl; Bvk is the selectivity of 
node v on topic k. 
A common choice for the survival 
time distribution Suv is the 
exponentially decaying. The minimum 
infection delay across the K topics 
follows the exponential distribution 
with intensity huv

30
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Parallelized Model Training 
on Shared Memory Machines

➢ Every process accepts an individual cascade and does gradient descent in 
parallel.

➢ Atomic Compare-And-Swap (CAS) operations to update the components of 
the influence and selectivity vector of the same node.

PPAM, Lublin, Poland, September 12, 2017
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Parallelized Model Training 
on Distributed Memory Machines

➢ On distributed memory machines, a cascade layer is proposed to reduce 
the inter-core communication caused by node-node connection in the 
survival analysis. 

➢ The response time of a node to a cascade follows exponential distribution 
with rate parameter Au Mc where Mc is the influence vector of a cascade.

➢ The training algorithm propagates parameters between the cascade layer 
and node layer. A node (blue) is connected to all the cascades (yellow) in 
which it involves.

Positive Samples

Negative Samples

PPAM, Lublin, Poland, September 12, 2017
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Parallelization Scheme 
for Distributed Memory Machines

➢ Asynchronous communication occurs between different processes while 
each process does internal computations. 

PPAM, Lublin, Poland, September 12, 2017
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AMOS Supercomputer @ Rensselaer
➢ Advanced Multiprocessing Optimized System (AMOS) is named 

after Amos Eaton, natural scientist, educator, and co-founder of the 
Rensselaer school.

➢ Ranked No. 1 among supercomputers at private American academic 
institutions and No. 3 among supercomputers at American academic 
institutions.

➢ The system is 5-rack, 5K nodes, 80K cores IBM Blue Gene/Q with 
additional equipment.

➢ Each node consists of a 16-core, 1.6 GHz A2 processor, with 16 
GB of DDR3 memory.

PPAM, Lublin, Poland, September 12, 2017
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Speedup and Efficiency on AMOS Supercomputer

➢ Input: 1 million cascades in a network with 2 million nodes. 
➢ Every node of the AMOS system uses 4 cores. Each core has 

an independent local memory for the embeddings associated 
with its own nodes/cascades and a ghost memory for the 
embeddings associated with remote nodes/cascades.

PPAM, Lublin, Poland, September 12, 2017
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Parallelization Performance 
on Community Detection

➢ The parallelization scheme preserves the quality of the resulting 
node embeddings.

#Processes=1 #Processes=4 

#Processes=16 #Processes=64 

Affiliation Matrix of the First 500 Nodes

PPAM, Lublin, Poland, September 12, 2017

5K cascades simulated on a Stochastic Blockmodel (SBM) network with 10K 

nodes. We evaluate the quality of the community discovered by K-means 

algorithm based on the vector representation of nodes.
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Virality Prediction of Online News Cascades 
➢ Task: Predict the final number of news sites reporting an 

emergent news event.
The summation of the influence vectors of the early adopters in the 

first 2 or 2.5 hours is used as the input. (IV2, IV2.5)
A baseline model uses features including number of early 

adopters, time intervals etc. as input. (BL2, BL2.5)

#News Sites = 5634 
#News Events = 41452

(K=35000)
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Conclusions
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• Social networks, and complex networks in general create 
new challenges for parallel computing
 Node degrees may vary widely in networks (e.g. scale-free 

networks), unlike spatial locality of cause and effect in physical 
world

 Size of the networks could be enormous creating challenged for 
memory

• The benefits and shortcomings of parallel multi-core 
shared memory machine and supercomputers are 
different than for large scale numerical computations
 Share memory simplifies parallelization, and is affordable, but 

limited in terms of final speedup
 Supercomputers are expensive, difficult to program, but can 

achieve higher speedup even though it comes with lower 
efficiency. 39
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