
Challenges of Parallelizing Graph
Algorithms for Network Science

Boleslaw K. Szymanskia
Konstantin Kuzmina, Mingming Chenb, Chris Gaiteric Xiaoayn Lua

aNeST Center & SCNARC, RPI, Troy, NY
bGoogle, Inc., Mountain View, CA

cRush Medical College, Rush University, Chicago, IL

PPAM, Lublin, Poland, September 12, 2017

Outline

 Motivation for this research

 Top-down bottom-up based community detection
algorithm SpeakEasy

 Parallelization of SpeakEasy

 Algorithm for Prediction of Viral News Cascades
and its parallelization

 Conclusions

PPAM, Lublin, Poland, September 12, 2017
2

3

Discovering Communities in Social & Bio-networks

Clustering implies modularity
Functional modularity imposes
natural boundary lines between
communities.

Discovering community structure
uncovers functionality

Bio (left) and social (right) networks are driven by functionality 3

Using Community Detection for Studying
Alzheimer’s Disease

4

Why take a new approach to so well studied subject?

Because we barely understand it at all

•400+ clinical trials

•200+ compounds

•One with slight reduction of symptoms (Memantine) and no
preventative drugs

•Genetic linkage studies indicate multiple molecular systems
involved in pathology

•For most cases small contributions from many molecules

•What is perceived as AD is clouded by other age-related
pathologies

PPAM, Lublin, Poland, September 12, 2017
4

Overview of datasets and approach

5
PPAM, Lublin, Poland, September 12, 2017

5

Motivation for Specialized Algorithms
➢Biological and social networks have high level of noise and

therefore have incorrect or missing links

➢Biological or social functions are accomplished by
communities of interacting molecules/cells or people

➢Membership in these communities may overlap when humans
or biological components are involved in multiple functions

Addition of
noise &

unclustered links

Multi-community nodes
Red dot = connection between nodes

6PPAM, Lublin, Poland, September 12, 2017
6

Computational Patterns in Network Science

Physics Interactions
Regular grid embedded in space,
all interaction are local.
Regular computational stencils.

Network interactions
Links are independent of nodes’
locations, interactions are global.
Irregular computational stencils.

7

E. David, J. Kleinberg, Networks, Crowds, and Markets: Reasoning about a Highly Connected World. CUP (2010).

PPAM, Lublin, Poland, September 12, 2017
7

Outline

 Motivation for this research

 Top-down bottom-up based community detection
algorithm SpeakEasy

 Parallelization of SpeakEasy

 Algorithm for Prediction of Viral News Cascades
and its parallelization

 Conclusions

PPAM, Lublin, Poland, September 12, 2017
8

SpeakEasy Algorithm
➢ Novelty: Identifies communities using top-down and bottom-up approaches

simultaneously. Specifically, nodes join communities based on their local
connections and global information about the network structure.

➢ Label propagation algorithm: each node updates its status to the label
found among nodes connected to it which has the greatest specificity, i.e.,
the actual number of times this label is present in neighboring nodes minus
its expected number based on its global frequency.

➢ Consensus clustering: the partition with the highest average adjusted
Rand Index among all other partitions is selected as the representative
partition to get robust community structure.

➢ Overlapping communities: overlapping communities can be obtained with
co-occurrence matrix. Multi-community nodes are selected as nodes which
co-occur with more than one of the final clusters with greater than a user-
selected threshold.

9PPAM, Lublin, Poland, September 12, 2017
9

Visual Example of SpeakEasy Clustering

 Labels are represented by color tags

 Multi-community nodes are tagged with multiple colors

A. Each node is assigned with random
unique label (before clustering)

B. Nodes with the same labels belong to
the same community (after clustering)

10PPAM, Lublin, Poland, September 12, 2017
10

Color-coded community ID

➢ Algorithm identifies communities
though evolution of common labels.

➢ After a certain number of iterations of
label propagation or if none of the
nodes updates its labels in the given
iteration, nodes with the same label
will be clustered into the same
community.

➢ However, because the clustering is
fast and parameter-free, running the
algorithm multiple times, we get an
assessment of the robustness of the
clusters and the identity of multi-
community nodes.

Correlation matrix after clustering

N
od

es

Nodes

Clustering Workflow

C. Gaiteri, M. Chen, B.K. Szymanski, et al. Scientific Reports 5:16361 (2015)

PPAM, Lublin, Poland, September 12, 2017
11

➢Run SpeakEasy multiple times
(e.g. 100x).

➢For all pairs of nodes (i, j) the
“co-occurrence” matrix records
number of times they land in
same cluster.

➢This is useful for both identifying
robust clusters and for finding
nodes that link multiple
communities together.

Co-occurrence matrix

Clusters in this matrix show
nodes that cluster across
many initial conditions

Strong non-clustered/ off-
diagonal elements show
multi-community nodes

fr
ac

tio
n

of
 re

pe
at

 c
o-

cl
us

te
rin

gs

N
od

es

Nodes

Identifying Multi-community Nodes

C. Gaiteri, M. Chen, B.K. Szymanski, et al. Scientific Reports 5:16361 (2015)

PPAM, Lublin, Poland, September 12, 2017
12

Application to Protein-protein Interaction
Datasets

A. The high throughput interaction dataset from Gavin et al. has nodes colored according

to protein complexes found in the Saccharomyces Genome Database (SGD).

B. The communities identified with SpeakEasy on the high throughput interaction dataset

from Gavin et al.

PPAM, Lublin, Poland, September 12, 2017
13

Outline

 Motivation for this research

 Top-down bottom-up based community detection
algorithm SpeakEasy

 Parallelization of SpeakEasy

 Algorithm for Prediction of Viral News Cascades
and its parallelization

 Conclusions

PPAM, Lublin, Poland, September 12, 2017
14

15

High-Level Approach to Parallelizing SpeakEasy

• Partition the data (nodes) between processors
• Perform label propagation on each partition in

parallel
• Synchronize at the end of each label

propagation iteration
• Exchange the global label frequencies

information among the processors
• Extract community data from label histories

(also in parallel)

PPAM, Lublin, Poland, September 12, 2017
15

Partitioning nodes for parallel
processing

PPAM, Lublin, Poland, September 12, 2017

• Each processor gets a (roughly)
the same number of
nodes

• Colors correspond to
processors

• A lighter shade is used
for external shadow
nodes

• Fine dashed line surrounds
internal nodes

• Wider spaced dashed line
encloses the external shadow
nodes

• Solid line denotes all nodes
associated with the processor
(internal and external shadow
nodes

16

A Traditional Edge List File Is Not the
Best Format for Parallel I/O

PPAM, Lublin, Poland, Septermber 12, 2017

• An edge list file is a text file with a variable line length
- cannot be efficiently partitioned for parallel I/O since file offsets for each

processor are not known before reading the entire file
- redundant due to storing multiple copies of the source node id

• Edges in the file are not guaranteed to be arranged in any particular
order (e.g., not grouped by the source node id)
- each processor needs to read the entire edge list file sequentially,

filtering out the nodes which belong to other processors
- I/O requests for the same data from different processors are not

guaranteed to be grouped together resulting in poor scalability

Re
ad

s
Re

ad
s

Re
ad

s

17

Designing a Parallel Efficient Edge
List Format

PPAM, Lublin, Poland, Septermber 12, 2017

• Store edges in a format with a fixed
field size. All values are either fixed
size text (e.g., 10 characters per
value) or fixed size binary integer
(e.g., 4 bytes per value)

• Group all edges with the same source
node id together

• Only store the destination node id in
the edge list file

• Store the source node id (only once!)
in a supplemental TOC file along with
an offset to the first edge of this
source node id in the edge list file

• The TOC file also has a fixed field size
([Source node id] [Edge list file offset])

18

Efficient Parallel I/O and Scalability

PPAM, Lublin, Poland, Septermber 12, 2017

• Each processor:
- computes its preliminary edge list file

offsets based on the file size (field size
is fixed!)

- adjusts the offsets to the source node id
boundaries by reading the TOC file

- reads the edges
• Each processor reads only a section of

the edge list file (an integer number of
source node groups)

• Each edge from the edge list file is
read only by one processor

• Each processor gets the same number
of edges (up to the adjustment to the
source node id group boundaries)
which provides a balanced load for the
O(m) label propagation algorithm

19

Propagation of Label Updates

PPAM, Lublin, Poland, Septermber 12, 2017

• A shadow node (௙
௉ೖ) fully

represents its corresponding
original node (𝑓) in the
external partition

• Multiple connections are
replaced by a combination of
a single link between the
original and the shadow
nodes and the
corresponding number of
edges between the shadow
node and the nodes in the
related partition

• Label updates are sent along
the virtual edge (𝑓, ௙

௉ೖ)

20

Computing Label Counts

PPAM, Lublin, Poland, Septermber 12, 2017

• Label history list for each
node has a fixed
configurable size

• Label counts are computed
from individual label history
lists

• The same label can occur
more than once in the
history of a node

• Label count values are
stored in partitioned global
label count tables (one
table per processor)

• A combination of all
individual partitioned count
tables can be thought of as
the global label count table

21

Collecting and Maintaining Label
Updates

PPAM, Lublin, Poland, Septermber 12, 2017

• Each processor has a
list that tracks label
count updates for all
labels found in
history lists of
nodes which
belong to internal
and external
partitions

• At each iteration a
new label is added
to the history list, and
the oldest label is
deleted

• If the accumulated change in label count
across all nodes during a certain iteration is
zero, there is no need to keep this update

22

Test Networks

PPAM, Lublin, Poland, Septermber 12, 2017

Network # of nodes # of edges

com-Youtube ≈ 1.13×106 ≈ 2.99×106

com-LiveJournal ≈ 3.99×106 ≈ 34.68×106

methylation 5,000 25×106

• YouTube – a platform for sharing video with certain features (e.g.,
the ability to like certain videos or subscribe to certain channels)
characteristic of social networks. Edges correspond to friendship
relations which users can establish.

• LiveJournal – on-line blog. The network of users is connected to
each other through a self-declared friendship relationship.

• Methylation – describes the distribution of methyl groups on DNA
(which helps to control which genes are transcribed). Arranged
linearly along DNA, so in the same chromosome all sites should
be placed into the same initial partition, as they are more likely to
show interactions.

23

• Standard hyper-threaded
Ubuntu1 Linux operating
system

• OpenMPI4 high performance
computing library

Testing Environment

PPAM, Lublin, Poland, Septermber 12, 2017

• High-performance shared-
memory machine (off-the-shelf
Silicon Mechanics2 Rackform
iServ R420.v4)

• 32 cores organized as four
Intel3 Xeon™ E5-4620v2 (2.6
GHz, 8-core, 20 MB Cache)

• Shared 1 TB of Random
Access Memory (RAM)
(32 x 32 GB DDR3-1600 ECC
Registered 4R DIMMs)
running at 1600 MT/s Max

1 Ubuntu and Canonical are registered trademarks of Canonical Ltd.
2 Silicon Mechanics and the Silicon Mechanics logo are registered trademarks of Silicon Mechanics, Inc.
3 Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
4 The Open MPI Project.

24

Performance Results

Social networks

A bio-medical network
8

6

4

2

0

16

12

8

4

0

20

16

12

8

4

0

PPAM, Lublin, Poland, Septermber 12, 2017
25

Work in Progress

PPAM, Lublin, Poland, Septermber 12, 2017

• More advanced partitioning methods to minimize the number of
edges going across the processor boundaries

• A wider selection of networks to test the performance of the
algorithm

• OpenMPI + OpenMP1 for even

greater parallel efficiency

• Update the code for
distributed memory
supercomputers

• Tackle billion-scale
networks by conducting
additional experiments on the
IBM® System Blue Gene®/Q

1 OpenMP ARB (Architecture Review Boards)
Image from http://www.timesunion.com/business/article/RPI-s-Amos-a-fast-study-4867074.php

26

Outline

 Motivation for this research

 Top-down bottom-up based community detection
algorithm SpeakEasy

 Parallelization of SpeakEasy

 Algorithm for Prediction of Viral News Cascades
and its parallelization

 Conclusions

PPAM, Lublin, Poland, September 12, 2017
27

➢ The spread of the news stories exhibits an emergent pattern in
online media. Can we predict viral news?

➢ We use survival analysis to model the spread of news events from
one online media site to its neighbors.

News Events in Online Media

The instantaneous rate of the infection
from node u to node v in a graph:

#news events per site
follows the power-law

28

Survival Analysis
➢ The stochastic propagation model [Kempe 2003]:

Infection delay through every link is independent.
Once a node has been infected, it won’t be infected again.

➢ According to the survival analysis [Infopath 2013]

where the survival function S(τ) denotes the probability
that NO infection happens within the period of time τ.

Hazard Function

PPAM, Lublin, Poland, September 12, 2017
29

30

Nodes vs. Edges

Influence Vector

Selectivity Vector

➢ Instead of modeling the links, we focus on the nodes. The number of
latent variable becomes linear in the number of nodes.

➢ Topic Model: where Auk is the influence of node
u on topic kl; Bvk is the selectivity of
node v on topic k.
A common choice for the survival
time distribution Suv is the
exponentially decaying. The minimum
infection delay across the K topics
follows the exponential distribution
with intensity huv

30
PPAM, Lublin, Poland, September 12, 2017

Parallelized Model Training
on Shared Memory Machines

➢ Every process accepts an individual cascade and does gradient descent in
parallel.

➢ Atomic Compare-And-Swap (CAS) operations to update the components of
the influence and selectivity vector of the same node.

PPAM, Lublin, Poland, September 12, 2017
31

Parallelized Model Training
on Distributed Memory Machines

➢ On distributed memory machines, a cascade layer is proposed to reduce
the inter-core communication caused by node-node connection in the
survival analysis.

➢ The response time of a node to a cascade follows exponential distribution
with rate parameter Au Mc where Mc is the influence vector of a cascade.

➢ The training algorithm propagates parameters between the cascade layer
and node layer. A node (blue) is connected to all the cascades (yellow) in
which it involves.

Positive Samples

Negative Samples

PPAM, Lublin, Poland, September 12, 2017
32

Parallelization Scheme
for Distributed Memory Machines

➢ Asynchronous communication occurs between different processes while
each process does internal computations.

PPAM, Lublin, Poland, September 12, 2017
33

AMOS Supercomputer @ Rensselaer
➢ Advanced Multiprocessing Optimized System (AMOS) is named

after Amos Eaton, natural scientist, educator, and co-founder of the
Rensselaer school.

➢ Ranked No. 1 among supercomputers at private American academic
institutions and No. 3 among supercomputers at American academic
institutions.

➢ The system is 5-rack, 5K nodes, 80K cores IBM Blue Gene/Q with
additional equipment.

➢ Each node consists of a 16-core, 1.6 GHz A2 processor, with 16
GB of DDR3 memory.

PPAM, Lublin, Poland, September 12, 2017
34

Speedup and Efficiency on AMOS Supercomputer

➢ Input: 1 million cascades in a network with 2 million nodes.
➢ Every node of the AMOS system uses 4 cores. Each core has

an independent local memory for the embeddings associated
with its own nodes/cascades and a ghost memory for the
embeddings associated with remote nodes/cascades.

PPAM, Lublin, Poland, September 12, 2017
35

Parallelization Performance
on Community Detection

➢ The parallelization scheme preserves the quality of the resulting
node embeddings.

#Processes=1 #Processes=4

#Processes=16 #Processes=64

Affiliation Matrix of the First 500 Nodes

PPAM, Lublin, Poland, September 12, 2017

5K cascades simulated on a Stochastic Blockmodel (SBM) network with 10K

nodes. We evaluate the quality of the community discovered by K-means

algorithm based on the vector representation of nodes.

36

Virality Prediction of Online News Cascades
➢ Task: Predict the final number of news sites reporting an

emergent news event.
The summation of the influence vectors of the early adopters in the

first 2 or 2.5 hours is used as the input. (IV2, IV2.5)
A baseline model uses features including number of early

adopters, time intervals etc. as input. (BL2, BL2.5)

#News Sites = 5634
#News Events = 41452

(K=35000)

37

Outline

 Motivation for this research

 Top-down bottom-up based community detection
algorithm SpeakEasy

 Parallelization of SpeakEasy

 Algorithm for Prediction of Viral News Cascades
and its parallelization

 Conclusions

PPAM, Lublin, Poland, September 12, 2017
38

Conclusions

PPAM, Lublin, Poland, September 12, 2017

• Social networks, and complex networks in general create
new challenges for parallel computing
 Node degrees may vary widely in networks (e.g. scale-free

networks), unlike spatial locality of cause and effect in physical
world

 Size of the networks could be enormous creating challenged for
memory

• The benefits and shortcomings of parallel multi-core
shared memory machine and supercomputers are
different than for large scale numerical computations
 Share memory simplifies parallelization, and is affordable, but

limited in terms of final speedup
 Supercomputers are expensive, difficult to program, but can

achieve higher speedup even though it comes with lower
efficiency. 39

Thank You

Questions
?

PPAM, Lublin, Poland, September 12, 2017

