
Can we Aggressively
Reduce Scientific Data

Without Losing Science?

Franck	Cappello
Argonne National	Laboratory

University of	Illinois	at	Urbana	Champaign
With	major	contribution from: Sheng	Di#,	Dinwen Tao+

#ANL,	+U.	California	Riverside.

• Why	lossy data	reduction?
• SZ	lossy compressor
• Z-checker:	reduction	error	analysis	
• Compression	vs.	Decimation	

Why do	we	need	
to	reduce	scientific	datasets?

Image	from	the	Argonne	Photon	Source

Scientific	Simulations	and	Experiments:	the	
flood	of	data!
• Today’s	scientific	research	is	using	simulation	or	instruments	and	produces	
extremely	large	of	datasets	to	process/analyze

• Feasibility	problems:
• Cosmology	Simulation:

• A	total	of	>20PB of	data	when	
simulating	trillion	of	particles	

• Petascale systems	FS	~20PB
(you	will	never	have	20PB	of	scratch	for	one	application)

• On	Blue	Waters	(1TB/s	file	system),	it	would	take	
20	X	10^15	/	10^12	seconds	(5h30)	to	store	the	data	

• Data	reduction	of	a	bout	a	factor	of	10	is	needed	
à currently	drop	9	snapshots	over	10	(also	called	decimation	in	time)

Data	reduction	is	needed	for	many	scientific	
simulations

• High-resolution	CESM	simulation	(1/10° ocean-ice,	1/4° atmosphere)
à 1	TB	of	data	generated	per	compute	day

• IPCC	Coupled	Model	Comparison	Projects	(CMIPs)
• Phase	5	(2013)	à 2.5	PB	of	output
• Phase	6	(2018)à >10	PB	expected!

• The	relative	cost	of	storage	is	increasing...
• Previous	NCAR	platform	(2013):	~20%	of	hardware	budget
• Current	NCAR	platform	(2017):	~50%	of	hardware	budget	
àWork	of	Allison	H.	Baker,	NCAR,	on	compression	of	climate	datasets	(HPDC2014)
à Data	reduction	of	about	a	factor	of	10	is	needed

Data	reduction	is	also	needed	for	
experimental	sciences

• APS-U	(next-generation	APS	project	at		Argonne):	
• Brain	Initiatives:	in	the	order	of	100PB of	storage:	
hundreds	of	specimens,	each	requiring	150TB	of	storage.

• Data	analysis	is	performed	on	ANL	Mira	(several	miles)
• Connection	between	APS	and	Mira:	100Gb/s

• Would	take	~10^17/10^10	=	10^7	seconds	to	transfer	the	data:	
115	days	to	move	the	data

• There	is	no	100PB	buffer	at	the	APS.

• APS-U	users	need	to	use	filters	to	reduce	the	data	size

à Data	reduction	of	about	a	factor	of	100	is	needed

When	data	is	too	big
It	cannot	be	communicated,	stored	or	processed	plain
à Data	needs	to	live	in	reduced	version

CISCO	statistics:	
• Annual	global	IP	traffic:	2.3	ZB	(10^21)	in	2020
• IP	video	traffic	will	be	82	percent	of	all	IP	traffic
à >>80%	of	the	IP	traffic	will	be	compressed!
à >>80%	of	the	files	exchanged	in	the	Internet	

will	exist	(probably	only)	in	compressed	version

Data	reduction	techniques
• Generic	Decimation:

• Just	remove	m	datum	over	n.	Typical	example:	remove	9	data	over	10.	90%	loss
• In	space	(e.g.	coarser	mesh	size)	and/or	in	time	(remove	snapshots)

• Specific	filtering:
• E.G.	ATLAS	raw	data	per	event:	1MB	at	100Mhz	(Run	2).	
• Run	3	(2021)	will	produce	events	at	60TB/s!!	
àGoal	is	to	reduce	data	rate	to	storage	to	20	GB/s	(/1000).	
• O2	framework	design:	463	FPGAs	detector	for	readout	and
fast	cluster	finding,	100,000	cores	to	compress	1.1	TB/s	streams.

• Generic	/	customizable	compression

Generic/Customizable	
Compression

of	Scientific	Data

Image	from	Nek5000	Fuild Dynamic	Simulation

Data	compression
• A	form	of	data	reduction

• ~40	years	old	(LZ77,	1977),	~70	years	(Shannon’s	information	theory,	1948)

• Systematically	(almost)	used	for	files	(e.g.	GZIP),	digital	photos	(e.g.	JPEG),	movies	

(e.g.	MP4),	music	(e.g.	MP3)

• Very	effective	on	images

• A	priori	compression	algorithms	are	generic	and	applicable	to	many	applications

• In	practice	they	are	combined	and	optimized	for	specific	usages

Compression

• Lossless:
• The	data	is	compressed	and	decompressed	in	such	a	way	that	the	decompressed	
data	is	identical to	the	initial	data	(there	is	no	alteration,	deviation,	distortion)

• Best	example:	Gzip (will	have	a	slide	on	it)

• Lossy:
• The	data	is	altered	during	compression:	some	piece	of	information	is	removed	
(lost):	the	original	data	cannot	be	retrieved.

• If	user	can	control	the	accuracy	of	the	compressed	data,	then	lossy compression	
is	a	trade-off	between	compression	factor	and	loss	of	accuracy

• Best	example:	JPEG	(will	have	a	slide	on	it)

General	Compression	Process
for	scientific	data
• Two	or	three	main	stages	(each	stage	may	use	multiple	sub-stages)

Decorrelation Coding

Approximation
(Quantization)

Input Lossless Output

Lossy

What	scientific	data	looks	like?
• Floating point	datasets

• Floating	point	datasets	looks	very	random	at	first	sight	(except	for	the	sign	and	
the	exponent)

This is what we need to compress
(bit map of 128 floating point numbers)

Sign+
Exponent Mantissa

Image from Leonardo Bautista Gomez (BSC)

Floating point	dataset
(numerical	simulation	
of	the	brain):

Random
(noise)

Entropy	of	Datasets

From:	Lindstrom,	Peter,	and	Martin	Isenburg.	"Fast	and	efficient	
compression	of	floating-point	data."	Visualization	and	Computer	
Graphics,	IEEE	Transactions	on 12.5	(2006):	1245-1250.

Maximum	compression factor	of	~2	according	to
Shannon	Entropy	(datasets	are	64	bits)

Note:	25.17	=	Log2(dataset	size)				384	x	384	x	256
à Every	value	is unique

Entropy	of	the	string	of	symbols:

p(x)	being	the	probability	of	occurrence	of	x	in	the	string
log	p(x):	information	quantity	carried	by	observing	x

What	advanced	lossless	compressors?

Son,	S.	W.,	Chen,	Z.,	Hendrix,	W.,	Agrawal,	A.,	
Liao,	W.	K.,	&	Choudhary,	A.	(2014).	Data	

Compression	for	the	Exascale Computing	Era-
Survey.	Supercomputing	frontiers	and	

innovations,	1(2),	76-88.

3 years	ago

Compression	limited	to	a	factor	of	2	in	most	cases

Anatomy	of	one	of	the
best	available	lossy compressors

Image	from	Combustion	Simulation

ANL	SZ	Lossy compressor
Design	considerations:

• Effective:	compete	with	the	best	existing	lossy compression	algorithms

• Efficient,	fast:	only	use	linear	complexity	steps	(no	sorting)

• Strict	respect	of	error	bounds	set	by	users

• Allow	different	types	of	error	bounds:	absolute,	relative,	relative	to	value	

range	(request	from	users),	PSNR

• Target	all	types	of	scientific	data:	1D	to	nD,	Structured,	Unstructured,	Particles,	

Instruments	(images)

• Produce	acceptable	distortions (error	autocorrelation,	spectral,	derivatives)		

SZ	is	supported	by	the	DOE/NNSA	ECP	EZ	and	ExaSky Projects	and	the	NSF	Aletheia Project.

How	do	we	compress	
(leverage	redundancy)

-0.00015

-0.0001

-5e-05

 0

 5e-05

 0.0001

 1000
 1500

 2000
 2500

 300

D
a
t
a

V
a
l
u
e

Linearized Index

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

 0.0002

 0 1000
 2000

 3000
 4000

 5000
 6000

 7000

D
a
t
a

V
a
l
u
e

Linearized Index

-2e-05
-1.5e-05

-1e-05
-5e-06

 0
 5e-06
 1e-05

 1.5e-05
 2e-05

 10000

 10200

 10400

 10600

 10800

 110

D
a
t
a

V
a
l
u
e

Linearized Index

APS	mouse	brain

Time/
Space

OCEAN
Reference height
humidity

ATM

Flux of Heat in
grid-y direction

Not	all	datasets	are	smooth

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18

 0 1000
 2000

 3000
 4000

 5000
 6000

 7000
 8000

 900

D
a
t
a

V
a
l
u
e

Linearized Index

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 0 2000
 4000

 6000
 8000

 100

D
a
t
a

V
a
l
u
e

Linearized Index

FLASH	(Sedov)Hurricane

Plotting	the	values	as
time	series	

Similarities,	autocorrelation,	smoothness

Smoothness	à Prediction

Not	smooth	
à Deal	with	prediction	error	

SZ	Design	Principles
• Prediction	based	lossy compressor
• Multi-stages

Decorrelation Coding

Approximation

Input Lossless Output

Lossy
(strict	error	control)

Prediction	
(linear,	

multi-dimensions)

Linear	Quantization		of	
prediction	errors

Variable	length	coding
(Huffman)

S.	Di,	F.	Cappello,	Fast	Error-bounded	Lossy HPC	Data	Compression	with	SZ,	IEEE	IPDPS	2016

Initial	Data
+	
Parameters

Lossy
Compressed
Data

Controlling	the	compression	error
• SZ	provides	point	wise	error	controls	(input	parameters)
• Three	types	of	error	(E:	error,	V:	intial dataset,	V’:	decompressed	dataset)	

• Absolute	error:																																				 Ea =	|V	– V’|
(small	value	range),	

• Relative	error: Er =	|V	– V’|	
(large	value	range),	 V

• Relative	to	value	range:	 Evr =		|V	– V’|	
Vmax-Vmin

SZ	Prediction	Stage
5 steps

total positive linear correlation. APAX profiler suggests
that the correlation coefficient between the original and the
reconstructed data should be 0.99999 (“five nines”) or better
[16].

Metric 4: To evaluate the size reduce as a result of the
compression, we choose to use the compression factor CF :

CF (F) =
filesize(Forig)

filesize(Fcomp)
(5)

or the bit-rate (bits/value):

BR(F) =
filesizebit(Fcomp)

N

(6)

where filesizebit is the file size in bit and N is the data
size. Bit-rate represents the amortized storage cost of each
value. For a single/double floating-point data set, the bit-
rate is 32/64 bits per value before a compression, while
the bit-rate will be less than 32/64 bits per value after
a compression. Also, CF and BR has a mathematical
relationship as BR(F) ⇤ CF (F) = 32/64 so that lower
bit-rate means higher compression factor.

Metric 5: To evaluate the speed of compression, we
will compare the throughput (bytes per second) based the
execution time of both compression and decompression with
other compressors.

III. PREDICTION MODEL BASED ON
MUTI-DIMENSIONAL SCIENTIFIC DATA SETS

In the section III and IV, we will propose our novel
compression algorithm. At a hight level, the compression
process includes three steps: (1) predict every data value
through our proposed multi-layer prediction model; (2)
adopt error-controlled quantization encoder with adaptive
number of intervals; (3) perform a variable-length encoding
technique based on the fairly uneven distributed quantization
codes. In this section, we will first present our new multi-
layer prediction model designed for multi-dimensional HPC
data sets. Then, we will give a solution to choose the best
layer for our multi-layer prediction model. We will illustrate
how our prediction model works using two-dimensional data
sets as an example.

A. Prediction Model for Multi-Dimensional HPC Data Sets
Given a two-dimensional data set on a uniform grid of the

size of M ⇥ N , where M is the size of second dimension
and N is the size of first dimension. We give each data a
global coordinate (i, j), where 0 < i  M and 0 < j  N .

In our compression algorithm, we process the data point
by point from the low dimension to the high dimension.
Assume the coordinate of the current processing data point
is (i0, j0) and the processed data points are (i, j), where
i < i0 or i = i0, j < j0, as shown in Fig 1. We denote the
data subset Si0j0 and Ti0j0 by:

S

n
i0j0 = {(i0 � k1, j0 � k2)|0  k1, k2  n} \ {(i0, j0)}

T

n
i0j0 = {(i0 � k1, j0 � k2)|0  k1 + k2  2n� 1, k1, k2 � 0}
Now we are trying to build a prediction model using the

n

2 � 1 symmetric processed data points in S

n
i0j0

to predict
data (i0, j0).

(including	all	colors)	
Processed	data	point�

Processing	data	point�

First	layer�

Second	layer�

Third	layer�

Fourth	layer�

1-layer�
2-layer�

3-layer�

4-layer�

Figure 1. An example of 9 ⇥ 9 two-dimensional data set showing the
processed / processing data and the data in different layers of the prediction
model.

First, let’s define a three-dimensional surface, named
“prediction surface”, with the maximum order of 2n � 1
as follow:

f(x, y) =
i,j�0X

0i+j2n�1

ai,jx
i
y

j (7)

The surface f(x, y) has n(2n+1) coefficients, so that we
can construct a linear system with n(2n + 1) equations by
using the coordinates and values of n(2n + 1) data points,
and then solve this system for these n(2n+ 1) coefficients,
consequently, we build the prediction surface f(x, y). How-
ever, the problem is that not any linear system has a solution,
which also means not any set of n(2n+1) data is able to be
on the surface at the same time. Fortunately, we demonstrate
that the linear system constructed by the n(2n + 1) data
in T

n
i0j0

can be solved with an explicit solution. Also, we
demonstrate that f(i0, j0) can be expressed by the linear
combination of the data values in S

n
i0j0

.
Now let’s give the following theorem and proof.
Theorem 1: The n(2n + 1) data in T

n
i0j0

will determine
a surface f(x, y) shown in equation (7), and the value of

f(i0, j0) equals to
(k1,k2) 6=(0,0)P
0k1,k2n

(�1)k1+k2+1
C

k1
n C

k2
n V (i0 �

k1, j0 � k2), where C

k
n is the combination number of

n!/k!(n� k)! and V (i, j) is the data value of (i, j).
Proof: We transform the coordinate of each data point

in T

n
i0j0

to a new coordinate as: (i0�k1, j0�k2) ! (k1, k2).
Then, using their new coordinates and data values, we can

construct a linear system with n(2n+ 1) equations as:

V (k1, k2) =
i,j�0X

0i+j2n�1

ai,jk
i
1k

j
2 (8)

where 0  k1 + k2  2n� 1, k1, k2 � 0.
Let’s denote F by

F =

(k1,k2) 6=(0,0)X

0k1,k2n

(�1)k1+k2+1
C

k1
n C

k2
n V (k1, k2) (9)

For any coefficient al,m,
i,j�0P

0i+j2n�1
ai,jk

i
1k

j
2 only has

one term containing al,m, which is k

l
1k

m
2 · al,m.

Also, due to equation (8) and (9), F contains

(
(k1,k2) 6=(0,0)P
0k1,k2n

(�1)k1+k2+1
C

k1
n C

k2
n k

l
1k

m
2) · al,m.

And because
(k1,k2) 6=(0,0)X

0k1,k2n

(�1)k1+k2+1
C

k1
n C

k2
n k

l
1k

m
2

=

(k1,k2) 6=(0,0)X

0k1,k2n

(�1)k1+k2+1
C

k1
n C

k2
n k

l
1k

m
2 + 0l+m

= �
(k1,k2) 6=(0,0)X

0k1,k2n

(�1)k1+k2
C

k1
n C

k2
n k

l
1k

m
2 + 0l+m

= �
X

0k1n

(�1)k1
C

k1
n k

l
1

X

0k2n

(�1)k2
C

j
nk

m
2 + 0l+m

For l+m  2n+1, either l or m is smaller than n, also due
to the theory of finite differences:

P
0in

(�1)iCi
nP (x) = 0

for any polynomial P (x) of degree less than n [6], so eitherP
0k1n

(�1)k1
C

k1
n k

l
1 = 0 or

P
0k2n

(�1)k2
C

k2
n k

m
2 = 0.

Therefore, F contains 0l+m · al,m so that F =
l,m�0P

0l+m2n�1
0l+m · al,m = a(0, 0) and f(0, 0) = a0,0 =

F =
(k1,k2) 6=(0,0)P
0k1,k2n

(�1)k1+k2+1
C

k1
n C

k2
n V (k1, k2).

Finally, we transform the current coordinate to the previ-
ous one reversely, i.e., (k1, k2) ! (i0 � k1, j0 � k2), thus,

f(i0, j0) =
(k1,k2) 6=(0,0)P
0k1,k2n

(�1)k1+k2+1
C

k1
n C

k2
n V (i0�k1, j0�

k2).
After obtaining this theorem, we know that the value

of (i0, j0) on the prediction surface, i.e. f(i0, j0), can be
expressed by the linear combination of the data values in
S

n
i0j0

, so that we can use the value of f(i0, j0) as our
predicted value for V (i0, j0). In other words, we build our
prediction model using the data values in S

n
i0j0

as follow:

f(i0, j0) =

(k1,k2) 6=(0,0)X

0k1,k2n

(�1)k1+k2+1
C

k1
n C

k2
n V (i0�k1, j0�k2)

(10)
Figure 1 also shows our definition of “layer” around

processing data point (i0, j0). Since the data subset S

n
i0j0

contains the layer from the first one to the n-th one, we call
the prediction model using S

n
i0j0

n-layer prediction model,
consequently, our proposed model can be named as multi-
layer prediction model.

Also, we can derive the general multi-layer prediction
model for any dimensional data sets. Due to space limi-

tations, we only give the formula as follow:

f(x1, ..., xd) =

(k1,...,kd) 6=(0,...,0)X

0k1,...,kdn

(�1)k1+...+kd+1
C

k1
n ...C

kd
n

· V (x1 � k1, ..., xd � kd)
(11)

where d is the dimensional size of the data set and n presents
“n-layer” used in the prediction model.

B. In-Depth Analysis of Best Layer for Multi-layer Predic-
tion Model

In the subsection III-A above, we developed a general
prediction model for multi-dimensional data sets. Based on
this model, we need to figure out another critical question:
how many layers should we use for the prediction model
during the compression process? In other words, we want to
find the best n for equation (11).

Why there has to exist a best n? We will keep using
two-dimensional data sets to explain. We know that a better
n can result in a more accurate data prediction, and a
more accurate prediction will bring us a better compression
performance, including improvements in compression factor,
average error and compression/decompression speed. On
one hand, a more accurate prediction can be achieved by
increasing the number of layers, which will bring more
useful information along multiple dimensions. On the other
hand, we also note that data from further distance will bring
more uncorrelated information (noises) into the prediction,
which means that too many layers will degrade the accuracy
of our prediction. So we infer that there has to exist a best
number of layers for our prediction model.

How to get the best n for our multi-layer prediction
model?

For a two-dimensional data set, we first need to get
prediction formulas for different layers by substituting 1,
2, 3 and etc. into our general model (as shown in equation
(11)), the formulas are shown in Table I.

Then we want to introduce a term called “prediction
hitting rate”, which is the proportion of the predictable
data in the whole data set. And we define a data point as
“predictable data” if the difference between its original value
and predicted value is not larger than the error bound. The
“prediction hitting rate” can be denoted by RPH = NPH

NTotal
,

where NPH is the number of predictable data and Ntotal is
the size of the data set.

In the ATM data sets example (from climate simulation),
the hitting rates are calculated in Table II, based on the pre-
diction methods described above. Here the second column
shows the prediction hitting rate by using the original data
values, denoted by R

orig
PH . In this case, 2-layer prediction

will be more accurate than other layers if performing the
prediction on the original data values. However, in order to
guarantee the compression error (absolute or relative) falls
into the user-set error bounds, the compression algorithm
must use the preceding decompressed data values instead
of the original data values. Therefore, the last column of
Table II shows the hitting rate of the prediction by using
preceding decompressed data values, denoted by R

decomp
PH .

Example	for	2D:

1)	Multi-dimensional
Multi-layer	Prediction
(extension	of	Lorenzo)

Produces	floating	point
Numbers	(predictions)

D.	Tao,	S.	Di,	Z.	Chen,	F.	Cappello,	Significantly	Improving	Lossy Compression	for	Scientific	Datasets	
Based	on	Multidimensional	Prediction	and	Error-Controlled	Quantization,	IEEE	IPDPS	2017

Input	floating
Point	data

SZ	Quantization	Stage

First-phase	
Predicted	Value�

Real	Value�

Error	
Bound�

2*Error	Bound�

2*Error	Bound�

…
�

…
�

Quan;za;on	Code�

2m-1+1�

2m-1�

2m-1-1�

2m-1-2	

2m-1+2�Second-phase	
Predicted	Value�

Second-phase	
Predicted	Value�

Second-phase	
Predicted	Value�

Second-phase	
Predicted	Value�2*Error	Bound�

2*Error	Bound�

1	

…
�

2m-1	…
�

Figure 2. Design of error-controlled quantization based on linear scaling
of the error bound.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

1 11

21

31

41

51

61

71

81

91

10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

Error-bounded Uniform Quantization Code�

0%

2%

4%

6%

8%

10%

12%

14%

1 11

21

31

41

51

61

71

81

91

10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

Error-bounded Uniform Quantization Code�

(a)� (b)�

Figure 3. Distribution produced by error-bounded uniform quantization
encoder on ATM data sets of (a) relative error bound = 10�3 and (b)
relative error bound = 10�4 with 255 quantization intervals (m = 8).

Huffman coding algorithm in details, but it’s worth to note
that, Huffman coding algorithm implemented in all the
lossless compressors on the market can only deal with the
source byte by byte, which means the total number of the
symbols is up to 256 (28), however, in our case, we don’t
limit m to be no greater than 8, which means, if m is larger
than 8, there are more than 256 quantization codes need
to be compressed using Huffman coding technique. Thus,
in our compression, we implement a high-efficient Huffman
coding algorithm that can handle a source with any number
of quantization codes.

Algorithm 1 in Figure 4 outlines our proposed compres-
sion algorithm. Note that the input data is a d-dimensional
floating-point array of the size n

(1)⇥n

(2)⇥· · ·⇥n

(d), where
n

(1) is the size of the lowest dimension and n

(d) is the size
of the highest dimension. In our algorithm, we compress the
data from low dimension to high dimension.

B. Adaptive Scheme for Number of Quantization Intervals
In the previous subsection IV-A, our proposed com-

pression algorithm will encode the predictable data with
its corresponding quantization code and then use variable-
length encoding to reduce the data size. While there is still
a question left - how many quantization intervals should we
use?

Figure 4. Proposed lossy compression algorithm using Multi-layer
Prediction Model and AEQVE

Generally, if the data is predictable, we will use a m�bit

code to encode it, otherwise, the data will be stored after
a reduction of binary-representation analysis proposed in
[9]. However, even binary-representation analysis can reduce
the data size to a certain extent, storing the unpredictable
data has much more overhead than the predictable data.
Therefore, we should select a value for the number of
quantization intervals as small as possible but can provide a
sufficient prediction hitting rate. Note that prediction hitting
rate depends on the error bound as shown in Figure 5. If the
error bound is too low, e.g., ebrel = 10�7, the compression
is close to lossless, and it’s hard to achieve a very high
prediction hitting rate. So we only focus our research on a
reasonable range of error bounds, e.g., ebrel � 10�6.

Now we introduce our adaptive scheme for the number
of quantization intervals used in the compression algorithm.
Figure 5 shows the prediction hitting rate with different
relative error bounds using different numbers of quantization
intervals on 2D ATM data sets and 3D Hurricane data sets.
It indicates that the prediction hitting rate will suddenly de-
scend at a certain error bound from over 90% to a relatively
low value, for example, if using 512 quantization intervals,

2)	Linear Quantization	of	prediction	error	(map data	into	quantization	bins,	#bins	defined	by	users	or	SZ)

First-phase	
Predicted	Value�

Real	Value�

Error	
Bound�

2*Error	Bound�

2*Error	Bound�

…
�

…
�

Quan;za;on	Code�

2m-1+1�

2m-1�

2m-1-1�

2m-1-2	

2m-1+2�Second-phase	
Predicted	Value�

Second-phase	
Predicted	Value�

Second-phase	
Predicted	Value�

Second-phase	
Predicted	Value�2*Error	Bound�

2*Error	Bound�

1	

…
�

2m-1	…
�

Figure 2. Design of error-controlled quantization based on linear scaling
of the error bound.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

1 11

21

31

41

51

61

71

81

91

10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

Error-bounded Uniform Quantization Code�

0%

2%

4%

6%

8%

10%

12%

14%

1 11

21

31

41

51

61

71

81

91

10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

Error-bounded Uniform Quantization Code�

(a)� (b)�

Figure 3. Distribution produced by error-bounded uniform quantization
encoder on ATM data sets of (a) relative error bound = 10�3 and (b)
relative error bound = 10�4 with 255 quantization intervals (m = 8).

Huffman coding algorithm in details, but it’s worth to note
that, Huffman coding algorithm implemented in all the
lossless compressors on the market can only deal with the
source byte by byte, which means the total number of the
symbols is up to 256 (28), however, in our case, we don’t
limit m to be no greater than 8, which means, if m is larger
than 8, there are more than 256 quantization codes need
to be compressed using Huffman coding technique. Thus,
in our compression, we implement a high-efficient Huffman
coding algorithm that can handle a source with any number
of quantization codes.

Algorithm 1 in Figure 4 outlines our proposed compres-
sion algorithm. Note that the input data is a d-dimensional
floating-point array of the size n

(1)⇥n

(2)⇥· · ·⇥n

(d), where
n

(1) is the size of the lowest dimension and n

(d) is the size
of the highest dimension. In our algorithm, we compress the
data from low dimension to high dimension.

B. Adaptive Scheme for Number of Quantization Intervals
In the previous subsection IV-A, our proposed com-

pression algorithm will encode the predictable data with
its corresponding quantization code and then use variable-
length encoding to reduce the data size. While there is still
a question left - how many quantization intervals should we
use?

Figure 4. Proposed lossy compression algorithm using Multi-layer
Prediction Model and AEQVE

Generally, if the data is predictable, we will use a m�bit

code to encode it, otherwise, the data will be stored after
a reduction of binary-representation analysis proposed in
[9]. However, even binary-representation analysis can reduce
the data size to a certain extent, storing the unpredictable
data has much more overhead than the predictable data.
Therefore, we should select a value for the number of
quantization intervals as small as possible but can provide a
sufficient prediction hitting rate. Note that prediction hitting
rate depends on the error bound as shown in Figure 5. If the
error bound is too low, e.g., ebrel = 10�7, the compression
is close to lossless, and it’s hard to achieve a very high
prediction hitting rate. So we only focus our research on a
reasonable range of error bounds, e.g., ebrel � 10�6.

Now we introduce our adaptive scheme for the number
of quantization intervals used in the compression algorithm.
Figure 5 shows the prediction hitting rate with different
relative error bounds using different numbers of quantization
intervals on 2D ATM data sets and 3D Hurricane data sets.
It indicates that the prediction hitting rate will suddenly de-
scend at a certain error bound from over 90% to a relatively
low value, for example, if using 512 quantization intervals,

Example	for	err:	10-4,	for	ATM

We	need	much	less	
than	256	intervals	
(8bits)

Example:	hit	rate	for	ATM

0.0%	
10.0%	
20.0%	
30.0%	
40.0%	
50.0%	
60.0%	
70.0%	
80.0%	
90.0%	

100.0%	

1.0E-01	 1.0E-02	 1.0E-03	 1.0E-04	 1.0E-05	 1.0E-06	 1.0E-07	 1.0E-08	

Pr
ed

ic
6o

n	
Hi
:
ng
	R
at
e�

Rela6ve	Error	Bound�

64	

512	

4096	

16384	

65536	

0.0%	
10.0%	
20.0%	
30.0%	
40.0%	
50.0%	
60.0%	
70.0%	
80.0%	
90.0%	

100.0%	

1.0E-01	 1.0E-02	 1.0E-03	 1.0E-04	 1.0E-05	 1.0E-06	 1.0E-07	 1.0E-08	

Pr
ed

ic
6o

n	
Hi
:
ng
	R
at
e�

Rela6ve	Error	Bound�

16	

64	

256	

2048	

4096	

Quan6za6on	
Intervals	#�

Quan6za6on	
Intervals	#�

(a)�

(b)�

Figure 5. Prediction hitting rate with decreasing error bounds using
different quantization intervals on (a) ATM data sets and (b) Hurricane
data sets.

the prediction hitting rate will drop from 97.1% to 41.4%
at ebrel = 10�6. Thus, we consider that 512 quantization
intervals can only cover the relative error bound higher than
10�6. However, different numbers of quantization intervals
have different capabilities to cover different error bounds.
Generally, more quantization intervals will cover lower error
bound. The paper [4] points that ebrel = 10�5 is enough for
the climate research simulation data sets, such as ATM data
sets. Thus, for ATM data sets, using 512 quantization inter-
vals is a good choice. While for Hurricane data sets, using
256 quantization intervals is enough to cover ebrel � 10�5.

Based on our experiments on a large variety of scientific
data sets, using 512 quantization intervals can achieve a
fairly good prediction hitting rate within reasonable error
bounds, thus, in our compressor, we set 256 quantization in-
tervals (m = 9) as default. However, if it’s unable to achieve
a good prediction hitting rate (smaller than ✓ in Algorithm
1) in some error bounds, our compression algorithm will
give users a suggestion to increase the number of quantiza-
tion intervals. In practice, sometimes user’s requirement for
compression accuracy is stable, therefore, user can tune a
good value for the number of quantization intervals and get
optimized compression factors in the following large-scale
compression.

V. EMPIRICAL PERFORMANCE EVALUATION

In this section, we will evaluate our compression algo-
rithm on various single-precision floating-point data sets,
including 2D ATM data sets from climate simulation [1]
, 2D APS data sets from X-ray scientific research [3], and
3D Hurricane data sets from hurricane simulation [2]. Also,
we will compare our compression algorithm with state-of-
art losseless (i.e., GZIP [8] and FPZIP [13]) and lossy
compressors (i.e., ZFP [12], SZ [9], ISABELA [11]), based
on the metrics we mentioned in the section III. We conducted
our experiments on a single core of the Stampede super-
computer (i.e., on a single node with two Intel Xeon E5-
2680 processors and 32GB DDR3 RAM) at Texas Advanced

Computer Center (TACC) .

A. Compression Factor
First, we will evaluate our compression algorithm based

on compression factor. Figure 6 shows the comparison
of compression factor between our compression algorithm
and the other compression methods, including ZFP, SZ,
ISABELA and GZIP, with reasonable relative error bounds,
i.e., 10�3, 10�4, 10�5, and 10�6. The figure indicates that
our lossy compression algorithm has the best compression
factor within these reasonable error bounds. For example,
with ebrel = 10�4, (1) for ATM data sets, the average
compression factor of our algorithm is 6.3, which is 110%
higher than ZFP’s 3.0, 70% higher than SZ’s 3.8, 350%
higher than ISABELA’s 1.4, 232% higher than FPZIP’s 1.9,
and 430% higher than GZIP’s 1.3; (2) for APS data sets, the
average compression factor of our algorithm is 5.2, which
is 79% higher than ZFP’s 2.9, 74% higher than SZ’s 3.0,
340% higher than ISABELA 1.2, 300% higher than FPZIP’s
1.3, and 372% higher than GZIP’s 1.1; (3) for Hurricane
data sets, the average compression factor of our algorithm
is 14.2, which is 196% higher than ZFP’s 4.8, 230% higher
than SZ’s 4.3, 1083% higher than ISABELA’s 1.2, 788%
higher than FPZIP’s 1.6, and 1190% higher than GZIP’s
1.1. Note that ISABELA cannot deal with some low error
bounds, thus, we only plot its compression factors until it
fails.

It’s worth to note that the maximum compression error
of ZFP is lower than the input error bound, while the
maximum compression errors of the other lossy compression
methods, including our algorithm, are exactly the same as
the input error bound. It means ZFP is over-conservative to
user’s accuracy requirement. Table IV shows the maximum
compression errors of our compression algorithm and ZFP
with different error bounds. For fair comparison, we also
evaluate our compression algorithm by setting its input error
bound as the maximum compression error of ZFP, which will
make the maximum compression errors of our algorithm and
ZFP to be the same. The comparison of compression factors
is shown in Fig 7. For example, (1) with the same maximum
compression error of 4.3 ⇥ 10�4, our average compression
factor is 162% higher than ZFP on ATM data sets; (2)
with the same maximum compression error of 1.4 ⇥ 10�4,
our average compression factor is 82% higher than ZFP on
Hurricane data sets.

B. Rate-distortion
We note that ZFP is designed for fixed bit-rate, while

the other three, i.e., our compressor, SZ and ISABELA,
are designed for fixed compression error. Thus, for fair
comparison, we will plot the rate-distortion curve for all
the lossy compressors and compare the distortion quality in
the same rate. Here rate means bit-rate in bits/value, and we
will use the peak signal-to-noise ratio (PSNR) to measure the
distortion quality. PSNR is calculated by the equation (3) and
in decibel (dB). Generally speaking, in rate-distortion curve,
the higher bit-rate (i.e., more bits per value) in compressed
storage, the higher quality (i.e., higher PSNR) reconstructed
data will be after decompression.

99%	hit	rate
with	16k	intervals
at	e=10-6

• Transforms	each	predicted
data	into	1	integer	value
(with	loss)

• If	data	is	out	of	scale,	
keep	it	in	a	separate	array

1,2,3

Array	of	quantization	(integers)

Array	of	unpredictable	data	(FP)

Data	are	ordered	in	the	arrays	
in	their	initial	order

0 0 0
1 2 3

Initial	data	(FP	numbers)
U U UP P P P

SZ	Coding	Stage

4)	Unpredictable	data	analysis

5)	Optional	GZIP	(L77	+	Huffman	coding):	improve	the	compression	by	about	10%,	but	also slowdown
Both	on	result	of	the	Huffman	coding	and	the	array of	unpredictable	data

3)	Variable	length	coding	(Huffman)

We	built	the	Huffman	tree	using	a	symbol	size	corresponding
to	the	number	of	bits	needed	to	code	the	bin	numbers

Reduce	the	number	of	bits	needed	to	represent	values

Reduce	the	number	of	bits	needed	to	represent	unpredictable	data	(<1%)

Lossy Compression	Performance
Argonne	SZ	1.4	lossy compressor

CESM/ATM HACC APS

S.	D.,	F.	Cappello,	Optimization	of	Error-Bounded	Lossy Compression	for	Hard-to-Compress	
HPC	Data,	IEEE	TPDS,	to	appear.

All	these	apps
need	at	least
a factor	of	10
compression

Surprisingly	Good	Compression	Performance
Quantum	Chemistry
All	properties	of	the	quantum	mechanical	system	are	
determined	by	the	wave	functions	which	are	obtained	
by	solving	the	Schrödinger	Equation.	

Computing	two-electron	repulsion	integrals	is	the	most	
time-consuming	step	in	solving	Schrödinger	Equation.

Typically,	integrals	cannot	fit	into	memory	and	iterative	
solutions	requires	recalculating	integrals	every	iteration.

Much	better	strategy:	compute	election	repulsion	
integrals	once,	compress	and	store	them	in	memory,	
and	read	ERIs	from	memory	every	time	we	need	them.

à But	a	factor	of	10	compression	is	needed	(at	least)
à Designed	a	new	predictor	using	pattern	matching

Sub-Blocks

-25

-15

-5

5

15

25

-25

-15

-5

5

15

25

Lexicographical	Order
(According	to	the	4	indexes)

In
te
gr
al
	V
al
ue

s

Pattern Scaled	Patterns	and	the Original	DataOriginal	Data

(a) (b) (c)

0
4
8
12
16
20
24

1E-9 1E-10 1E-11
Co

m
pr
es
sio

n	
Ra
tio

Error	Bound

PaSTRI

SZ+GZIP

ZFP+GZIP

0

1

2

3

4

1E-9 1E-10 1E-11

Av
g.
	C
om

p/
De

co
m
p	
Ti
m
e

Error	Bound
(a) (b)

New	algorithm	has	much	
higher	compression	factors	

New	algorithm	is	also	faster

A.	Murat	Gok,	D.	Tao,	S.	Di,	V.	Mironov,	Y.	Alexeev,	F.	Cappello,	PaSTRI:	A	Novel	Data	
Compression	Algorithm	for	Two-Electron	Integrals	in	Quantum	Chemistry,	IEEE/ACM	SC17

Hydrogen-like
atomic orbitals

Computed
hydrogen atom
orbital for the
6s orbital

Rate	distortion

Compression	ratio/rate	(AMDF),	REB:	10-4

AMDF Molecular Dynamics code (Accelerated Molecular
Dynamics Family)
A compression factor of 10 is needed

Some	datasets	are	very	hard	to	compress	
e.g.	Particle	datasets

D.	Tao,	S.	Di,	Z.	Chen,	and	F.	Cappello,	In-Depth	Exploration	of	Single-Snapshot	
Lossy Compression	Techniques	for	N-Body	Simulations,	Submitted

Similar	result	with	HACC	(cosmology)
àWe	need	to	find	a	new	way	to	compress

these	particles	datasets

Some	datasets	are	much	easier	to	compress
In	some	situation,	SZ	1.4	compression	factor	can	be	>100.
And	the	difference	is	barely	noticeable.

E.G.	Miranda	dataset*

Miranda is a radiation hydrodynamics code
designed for large-eddy simulation of
multicomponent flows with turbulent mixing.

Example of Rayleigh-Taylor instability simulation
involving two fluids of different density.

à Compression	factor	of	110	with	
acceptable	distortions

*Figure	from	Peter	Lindstrom,	LLNL

Can we Aggressively
Reduce Scientific Data

Without Losing Science?

Image	from	HACC	Cosmology	Simulation

How	Lossy Compression	Distorts	Scientific	Data?
• Lossy compressors	using	different	algorithms	are	likely	to	distort	the	
dataset	differently

• Very	few	studies	(mostly	on	climate	datasets)	analyze	compression	quality

• We	need	to	compare	the	different	compressors	scientifically	(fairly)
• We	need	to	share	common	metrics	quantifying	the	lossy compression	error

àWe	need	a	methodology	(metrics	and	tools)	to	assess	the	nature	of	the	
error	introduced	by	lossy compressors.

ANL	Z-checker	(ECP	CODAR)

2	modes:	
• With	SZ	and	ZFP	integrated	(1	input	file),	compression	is	run	several	times	for	RD
• 2	input	files	(does	not	provide	rate-distortion	analysis)

Currently	accepts	only	data	sources	in	binary	format	(big/little	endian),	32	or	64	bits.

Analysis	Kernels:
1. Initial	Data	Property	Analyzer
2. Compression	Error	Analyzer

Incremental	design:
• Metrics	and	interface	defined	with	users	
Integrates	analysis	functions	in	C	and	R

Data Visualization Engine

Output Engine

Input Engine

Data source (stream, file, etc.)
with multiple formats (HDF5, NetCDF, etc.)

C
on

fig
ur

at
io

n
P

ar
se

r

Data Property
Analyzer

Compression
Checker

Analysis Kernel

I. Foster,	M. Ainsworth,	B. Allen,	J. Bessac,	F. Cappello et	al.	Computing	Just	What	You	
Need:	Online	Data	Analysis	and	Reduction	at	Extreme	Scales,	Europar 2017

Z-Checker	is	supported	by	the	DOE/NNSA	ECP	CODAR	Project.

Z-checker	Example:	Climate	and	Severe	Weather
• Experimental	data	(single-floating	point)

• Climate:	ATM:	2D	datasets	from	climate/atmosphere	simulations	(pseudo	3D)
• Weather:	hurricane:	3D	datasets	from	Hurricane	Isabel	simulation

Notes:	Tested	many	different	datasets:
• Particle	datasets	(Cosmology,	Molecular	Dynamics)
• Quantum	Chemistry
• Datasets	from	Instrument	(Argonne	APS,	Berkeley	Linac Coherent	Light	Source)

à The	following	slides	apply	also	to	these	datasets

Z-checker:	Compression	ratios	(factors)

u Value-range-based (VRB) relative error bound:
(ratio of absolute error bound to data value range)

u E.g., VRB relative error bound = 1E-3
Ø ATM: SZ-1.4: CF=14à 2x of ZFP
Ø Hurricane: SZ-1.4: CF=33 à 2.5x of ZFP

ATM Hurricane

Z-checker:	Rate	Distortion

data values in multiple dimensions, unlike the previous
work [9] that focuses only single-dimension. In fact,
it is very challenging to extend the single-dimensional
prediction to multiple dimensions. On the one hand,
higher-dimensional prediction requires to solve more
complicated surface formula involving much more vari-
ables, which will be intractable especially when the
number of data points used in the prediction is relatively
high. (2) Since the data used in the prediction must be
decompressed values for purpose of strictly controlling
decompression errors, the prediction accuracy would
be degraded significantly if there are many data points
selected for the prediction. In this paper, not only do
we derive a generic formula for the multi-dimensional
prediction, but we also optimize the number of data
points used in the prediction by an in-depth analysis
with real-world data cases.

• We design an adaptive error-controlled quantization
model, in order to optimize the compression quality.
Such an optimization is very challenging in that (1)
we need to design the adaptive solution based on
very careful observation on masses of experiments;
(2) the variable-length encoding has to be tailored and
reimplemented to suit variable numbers of quantization
intervals.

• We carefully implement the new compression algorithm
and release the source code under the BSD license. We
comprehensively evaluate the new compression method
by using multiple real-world production scientific data
sets across multiple domains, such as hurricane simula-
tion [2], climate simulation [1] and X-ray scientific re-
search (APS) [3]. We carefully compared our compres-
sor to as many state-of-the-art compressors as possible,
including GZIP, ISABELA, ZFP, SZ, etc.. Experiments
show that our compressor is the best in class, especially
on both compressor factors (or bit-rates). Our solution
is better than the second-best solution ZFP by nearly
2.3x increase in compression factor and 5.4x reduction
in normalized root mean squared error on average.

The rest of the papers is organized as follows.

II. PROBLEM AND METRICS DESCRIPTION

In this paper, we mainly focus on the design and imple-
mentation of a lossy compression algorithm for scientific
data sets with given error bounds in HPC applications.
Generally, HPC applications can generate multiple snapshots
which will contain multiple variables. Each variable has
a specific data type, e.g., multi-dimensional floating-point
array and string data. Since the majority type of the scientific
data is floating-point, we will foucs our lossy compression
research on how to compress multi-dimensional floating-
point data sets within reasonable error bounds. Also, we
want to achieve a better compression performance measured
by below metrics:

1) Pointwise error between original and reconstructed
data sets, e.g., absolute and relative error.

2) Average error between original and reconstructed data
sets, e.g., RMSE, NRMSE and PSNR.

3) Correlation between original and reconstructed data
sets.

4) Compression factor or bit-rates.
5) Compression and decompression speed.
We will describe the above metrics in details in the follow-

ing discussion. Let’s first define some necessary notations.
Let the original multi-dimensional floating-point data set

be X = {x1, x2, ..., xN}, where each xi is a floating-
point scalar. Let the reconstructed data set be X̃ =
{x̃1, x̃2, ..., x̃N}, which is recovered by the decompression
process. Also, we denote the range of X by RX , i.e,
RX = xmax � xmin.

We design two error bounds for the user, i.e., absolute
error bound and relative error bound, which are being widely
used in scientific data sets. We denote the absolute error
bound by ebabs and the relative error bound by ebrel.

Now let’s discuss the metrics we will use in measuring
the performance of a compression method.

Metric 1: Let eabsi = xi� x̃i, where eabsi is the absolute
point-wise error between the original data and the recon-
structed data at data point i. Let ereli = eabsi/RX , where
ereli is the relative point-wise error. In our compression
algorithm, one should set either one or both of the absolute
error and the relative error depending on their compression
accuracy requirement, and the compression errors will be
guaranteed within the error bounds, which can be expressed
by the formula |eabsi | < ebabs or/and |ereli | < ebrel for
1  i  N .

Metric 2: To evaluate the average error in the compression,
we first choose to use the popular root mean squared error
(RMSE):

rmse =

vuut 1

N

NX

i=1

(eabsi)
2 (1)

Due to the diversity of variables, we further adopt the
normalized RMSE (NRMSE) :

nrmse =
rmse

RX
(2)

We also note that peak signal-to-noise ratio (PSNR) is
another commonly used average error metric for evaluating
a lossy compression method, especially in visualization, it’s
calculated as below:

psnr = 20 · log10(
RX

rmse

) (3)

PSNR measures the size of the RMSE relative to the peak
size of the signal. Logically, lower value of RMSE/NRMSE
means less error, but higher value of PSNR is preferred since
it means the ratio of signal to noise is higher.

Metric 3: To evaluate the correlation between the original
and reconstructed data sets, we adopt the Pearson correlation
coefficient ⇢:

⇢ =
cov(X, X̃)

�X�X̃

(4)

where cov(X, X̃) is the covariance. This coefficient is a
measurement of the linear dependence between two vari-
ables, giving ⇢ between +1 and �1, where ⇢ = 1 is

data values in multiple dimensions, unlike the previous
work [9] that focuses only single-dimension. In fact,
it is very challenging to extend the single-dimensional
prediction to multiple dimensions. On the one hand,
higher-dimensional prediction requires to solve more
complicated surface formula involving much more vari-
ables, which will be intractable especially when the
number of data points used in the prediction is relatively
high. (2) Since the data used in the prediction must be
decompressed values for purpose of strictly controlling
decompression errors, the prediction accuracy would
be degraded significantly if there are many data points
selected for the prediction. In this paper, not only do
we derive a generic formula for the multi-dimensional
prediction, but we also optimize the number of data
points used in the prediction by an in-depth analysis
with real-world data cases.

• We design an adaptive error-controlled quantization
model, in order to optimize the compression quality.
Such an optimization is very challenging in that (1)
we need to design the adaptive solution based on
very careful observation on masses of experiments;
(2) the variable-length encoding has to be tailored and
reimplemented to suit variable numbers of quantization
intervals.

• We carefully implement the new compression algorithm
and release the source code under the BSD license. We
comprehensively evaluate the new compression method
by using multiple real-world production scientific data
sets across multiple domains, such as hurricane simula-
tion [2], climate simulation [1] and X-ray scientific re-
search (APS) [3]. We carefully compared our compres-
sor to as many state-of-the-art compressors as possible,
including GZIP, ISABELA, ZFP, SZ, etc.. Experiments
show that our compressor is the best in class, especially
on both compressor factors (or bit-rates). Our solution
is better than the second-best solution ZFP by nearly
2.3x increase in compression factor and 5.4x reduction
in normalized root mean squared error on average.

The rest of the papers is organized as follows.

II. PROBLEM AND METRICS DESCRIPTION

In this paper, we mainly focus on the design and imple-
mentation of a lossy compression algorithm for scientific
data sets with given error bounds in HPC applications.
Generally, HPC applications can generate multiple snapshots
which will contain multiple variables. Each variable has
a specific data type, e.g., multi-dimensional floating-point
array and string data. Since the majority type of the scientific
data is floating-point, we will foucs our lossy compression
research on how to compress multi-dimensional floating-
point data sets within reasonable error bounds. Also, we
want to achieve a better compression performance measured
by below metrics:

1) Pointwise error between original and reconstructed
data sets, e.g., absolute and relative error.

2) Average error between original and reconstructed data
sets, e.g., RMSE, NRMSE and PSNR.

3) Correlation between original and reconstructed data
sets.

4) Compression factor or bit-rates.
5) Compression and decompression speed.
We will describe the above metrics in details in the follow-

ing discussion. Let’s first define some necessary notations.
Let the original multi-dimensional floating-point data set

be X = {x1, x2, ..., xN}, where each xi is a floating-
point scalar. Let the reconstructed data set be X̃ =
{x̃1, x̃2, ..., x̃N}, which is recovered by the decompression
process. Also, we denote the range of X by RX , i.e,
RX = xmax � xmin.

We design two error bounds for the user, i.e., absolute
error bound and relative error bound, which are being widely
used in scientific data sets. We denote the absolute error
bound by ebabs and the relative error bound by ebrel.

Now let’s discuss the metrics we will use in measuring
the performance of a compression method.

Metric 1: Let eabsi = xi� x̃i, where eabsi is the absolute
point-wise error between the original data and the recon-
structed data at data point i. Let ereli = eabsi/RX , where
ereli is the relative point-wise error. In our compression
algorithm, one should set either one or both of the absolute
error and the relative error depending on their compression
accuracy requirement, and the compression errors will be
guaranteed within the error bounds, which can be expressed
by the formula |eabsi | < ebabs or/and |ereli | < ebrel for
1  i  N .

Metric 2: To evaluate the average error in the compression,
we first choose to use the popular root mean squared error
(RMSE):

rmse =

vuut 1

N

NX

i=1

(eabsi)
2 (1)

Due to the diversity of variables, we further adopt the
normalized RMSE (NRMSE) :

nrmse =
rmse

RX
(2)

We also note that peak signal-to-noise ratio (PSNR) is
another commonly used average error metric for evaluating
a lossy compression method, especially in visualization, it’s
calculated as below:

psnr = 20 · log10(
RX

rmse

) (3)

PSNR measures the size of the RMSE relative to the peak
size of the signal. Logically, lower value of RMSE/NRMSE
means less error, but higher value of PSNR is preferred since
it means the ratio of signal to noise is higher.

Metric 3: To evaluate the correlation between the original
and reconstructed data sets, we adopt the Pearson correlation
coefficient ⇢:

⇢ =
cov(X, X̃)

�X�X̃

(4)

where cov(X, X̃) is the covariance. This coefficient is a
measurement of the linear dependence between two vari-
ables, giving ⇢ between +1 and �1, where ⇢ = 1 is

data values in multiple dimensions, unlike the previous
work [9] that focuses only single-dimension. In fact,
it is very challenging to extend the single-dimensional
prediction to multiple dimensions. On the one hand,
higher-dimensional prediction requires to solve more
complicated surface formula involving much more vari-
ables, which will be intractable especially when the
number of data points used in the prediction is relatively
high. (2) Since the data used in the prediction must be
decompressed values for purpose of strictly controlling
decompression errors, the prediction accuracy would
be degraded significantly if there are many data points
selected for the prediction. In this paper, not only do
we derive a generic formula for the multi-dimensional
prediction, but we also optimize the number of data
points used in the prediction by an in-depth analysis
with real-world data cases.

• We design an adaptive error-controlled quantization
model, in order to optimize the compression quality.
Such an optimization is very challenging in that (1)
we need to design the adaptive solution based on
very careful observation on masses of experiments;
(2) the variable-length encoding has to be tailored and
reimplemented to suit variable numbers of quantization
intervals.

• We carefully implement the new compression algorithm
and release the source code under the BSD license. We
comprehensively evaluate the new compression method
by using multiple real-world production scientific data
sets across multiple domains, such as hurricane simula-
tion [2], climate simulation [1] and X-ray scientific re-
search (APS) [3]. We carefully compared our compres-
sor to as many state-of-the-art compressors as possible,
including GZIP, ISABELA, ZFP, SZ, etc.. Experiments
show that our compressor is the best in class, especially
on both compressor factors (or bit-rates). Our solution
is better than the second-best solution ZFP by nearly
2.3x increase in compression factor and 5.4x reduction
in normalized root mean squared error on average.

The rest of the papers is organized as follows.

II. PROBLEM AND METRICS DESCRIPTION

In this paper, we mainly focus on the design and imple-
mentation of a lossy compression algorithm for scientific
data sets with given error bounds in HPC applications.
Generally, HPC applications can generate multiple snapshots
which will contain multiple variables. Each variable has
a specific data type, e.g., multi-dimensional floating-point
array and string data. Since the majority type of the scientific
data is floating-point, we will foucs our lossy compression
research on how to compress multi-dimensional floating-
point data sets within reasonable error bounds. Also, we
want to achieve a better compression performance measured
by below metrics:

1) Pointwise error between original and reconstructed
data sets, e.g., absolute and relative error.

2) Average error between original and reconstructed data
sets, e.g., RMSE, NRMSE and PSNR.

3) Correlation between original and reconstructed data
sets.

4) Compression factor or bit-rates.
5) Compression and decompression speed.
We will describe the above metrics in details in the follow-

ing discussion. Let’s first define some necessary notations.
Let the original multi-dimensional floating-point data set

be X = {x1, x2, ..., xN}, where each xi is a floating-
point scalar. Let the reconstructed data set be X̃ =
{x̃1, x̃2, ..., x̃N}, which is recovered by the decompression
process. Also, we denote the range of X by RX , i.e,
RX = xmax � xmin.

We design two error bounds for the user, i.e., absolute
error bound and relative error bound, which are being widely
used in scientific data sets. We denote the absolute error
bound by ebabs and the relative error bound by ebrel.

Now let’s discuss the metrics we will use in measuring
the performance of a compression method.

Metric 1: Let eabsi = xi� x̃i, where eabsi is the absolute
point-wise error between the original data and the recon-
structed data at data point i. Let ereli = eabsi/RX , where
ereli is the relative point-wise error. In our compression
algorithm, one should set either one or both of the absolute
error and the relative error depending on their compression
accuracy requirement, and the compression errors will be
guaranteed within the error bounds, which can be expressed
by the formula |eabsi | < ebabs or/and |ereli | < ebrel for
1  i  N .

Metric 2: To evaluate the average error in the compression,
we first choose to use the popular root mean squared error
(RMSE):

rmse =

vuut 1

N

NX

i=1

(eabsi)
2 (1)

Due to the diversity of variables, we further adopt the
normalized RMSE (NRMSE) :

nrmse =
rmse

RX
(2)

We also note that peak signal-to-noise ratio (PSNR) is
another commonly used average error metric for evaluating
a lossy compression method, especially in visualization, it’s
calculated as below:

psnr = 20 · log10(
RX

rmse

) (3)

PSNR measures the size of the RMSE relative to the peak
size of the signal. Logically, lower value of RMSE/NRMSE
means less error, but higher value of PSNR is preferred since
it means the ratio of signal to noise is higher.

Metric 3: To evaluate the correlation between the original
and reconstructed data sets, we adopt the Pearson correlation
coefficient ⇢:

⇢ =
cov(X, X̃)

�X�X̃

(4)

where cov(X, X̃) is the covariance. This coefficient is a
measurement of the linear dependence between two vari-
ables, giving ⇢ between +1 and �1, where ⇢ = 1 is

ATM Hurricane

u ZFP: Best mode “fixed-accuracy“
u E.g., bit-rate = 8 bits/value (CR = 4)

Ø SZ-1.4: 14 dB higher than ZFP on ATM
Ø SZ-1.4: 11 dB higher than ZFP on Hurricane

u PSNR is logarithmic scale
u PSNR à RMSE: 14 dB ~ 5x, 11 dB ~ 3.5x

Z-checker:	Distribution	of	Compression	Error

0.0%	

1.0%	

2.0%	

3.0%	

4.0%	

5.0%	

6.0%	

7.0%	

Compression	Error�

Our	Compression	 ZFP	

0 7×10-5�-1.4×10-4� 1.4×10-4�-7×10-5�
0.0%	

1.0%	

2.0%	

3.0%	

4.0%	

5.0%	

Compression	Error�

Our	Compression	 ZFP	

0-4.3×10-4� 4.3×10-4�-2.2×10-4� 2.2×10-4�

HurricaneATM

SZ:	Uniform
ZFP:	Gaussian

Distribution	plot	informs	about	the	nature	of	the	noise	that	the	lossy compressor	adds	to	the	dataset.	
It	also	shows	how	the	errors	are	distributed	around	0.	SZ	and	ZFP	provide	symmetric	errors:	Good.
We	need	to	know	what	type	of	distribution	is	better	for	users:	Uniform	or	Gaussian

Pr
ob

ab
ili
ty

SZ																		 SZ																		

Z-checker:	Spectral	Alteration
We	want	to	know	how	the	compression	affects	the	different	components	of	the	signal	(frequency	domain)

Compute	the	Fourier	Spectrums	for
• the	initial	dataset
• the	decompressed	dataset

Plot	the	amplitude	difference	for	each
frequency	(normalized	from	the	initial
dataset)

In	general,	we	want	to	preserve	as	much
as	possible	the	spectral	properties	of
the	signal

Z-checker:	Pearson	Correlation	of	
Initial	and	Decompressed	Datasets

Considering a dataset {x1,...,xn} containing n values and
another dataset {y1,...,yn} containing n values

Pearson correlation coefficient measures
the linear correlation between
two variables X and Y.
r	=		+1≤	Value	≤	−1,		
• 1:	total	positive	linear	correlation,	
• 0:	no	linear	correlation,	
• −1:	total	negative	linear	correlation

We	want	a	maximum	correlation	(˜1)	between	the	initial	and	decompressed	datasets
X

Y

X X

If	X	is	the	initial	dataset	and	Y	the	reconstructed	dataset,
We	sort	the	values	in	X	and	use	X	ordering	for	Y	to	plot	the	graph

covariance

Std var x,y

Z-checker:	Autocorrelation	of	the	Compression	Error

-0.3	

-0.2	

-0.1	

0	

0.1	

0.2	

0.3	

1	 6	 11	 16	 21	 26	 31	 36	 41	 46	

ZFP	

-0.006	

-0.004	

-0.002	

0	

0.002	

0.004	

0.006	

1	 6	 11	 16	 21	 26	 31	 36	 41	 46	

Our	Compression	

-0.2	

-0.1	

0	

0.1	

0.2	

1	 6	 11	 16	 21	 26	 31	 36	 41	 46	

ZFP	

-0.003	

-0.002	

-0.001	

0	

0.001	

0.002	

0.003	

1	 6	 11	 16	 21	 26	 31	 36	 41	 46	

Our	Compression	

(a)� (b)�

(c)� (d)�

Figure 10. Autocorrelation analysis (first 50 coefficients) of compression
errors with increasing distances using our lossy compressor and ZFP on
ATM (i.e., (a) and (b)) and Hurricane (i.e., (c) and (d)) data sets.

loss of the location information in the data-series, so that
it suffers from low compression factor especially for large
number of data points. Lossy compressor using vector quan-
tization, such as NUMARCK [7] and SSEM [15], cannot
guarantee the compression error within the bound and have
a limitation of compression factor, which was demonstrated
in [9]. The difference between NUMARCK and SSEM is
that NUMARCK uses vector quantization on the differ-
ences between adjacent two iterations for each data, while
SSEM uses vector quantization on the high-frequency data
after wavelet transform. ZFP is a lossy compressor using
exponent/fixed-point alignment, orthogonal block transform,
bit-plane encoding, etc. But it doesn’t respect the error bound
when the data value range is huge and its compression errors
have relatively strong correlation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel error-controlled lossy
compression algorithm. We evaluate our compression algo-
rithm by using multiple real-world production scientific data
sets across multiple domains, and compare with 5 stat-of-
art compressors based on a series of metrics. We implement
and release our compressor under BSD license. The key
contributions are listed below:

• We derive a generic model for the multi-dimensional
prediction and optimize the number of data poins used
in the prediction to achieve a significantly improvement
of the prediction hitting rate.

• We design an adaptive error-controlled quantization
model (AEQVE) to deal with the irregular data with
spiky changes effectively.

• Our compression factor is more than 2x compared to
the second-best compressor ZFP with reasonable error
bounds. Our average compression error (i.e, NRMSE)
has more than 5x reduction over the second-best ZFP
with user-desired bit-rates.

Although the speed of our compressor is 1.8x faster than
SZ and 61x faster than ISABELA, it’s still 40% slower than
ZFP. Thus, in the future work, we plan to further optimize
our code and accelerate our compressor.

REFERENCES

[1] Community Earth Simulation Model (CESM). Available at
https://www2.cesm.ucar.edu/.

[2] A simulation of a hurricane from the National
Center for Atmospheric Research. Available at
http://vis.computer.org/vis2004contest/data.html.

[3] E. Austin. Advanced photon source. Synchrotron Radiation
News, 29(2):29–30, 2016.

[4] A. H. Baker, H. Xu, J. M. Dennis, M. N. Levy, D. Nychka,
S. A. Mickelson, J. Edwards, M. Vertenstein, and A. Wegener.
A methodology for evaluating the impact of data compression
on climate simulation data. In HPDC’14, Vancouver, BC,
Canada - June 23 - 27, 2014, pages 203–214, 2014.

[5] D. Bernholdt, S. Bharathi, D. Brown, K. Chanchio, M. Chen,
A. Chervenak, L. Cinquini, B. Drach, I. Foster, P. Fox,
et al. The earth system grid: Supporting the next generation
of climate modeling research. Proceedings of the IEEE,
93(3):485–495, 2005.

[6] S. Brenner and R. Scott. The mathematical theory of finite
element methods, volume 15. 2007.

[7] Z. Chen, S. W. Son, W. Hendrix, A. Agrawal, W. Liao, and
A. N. Choudhary. NUMARCK: machine learning algorithm
for resiliency and checkpointing. In International Conference
for High Performance Computing, Networking, Storage and
Analysis, SC 2014, New Orleans, LA, USA, November 16-21,
2014, pages 733–744, 2014.

[8] L. P. Deutsch. Gzip file format specification version 4.3.

[9] S. Di and F. Cappello. Fast error-bounded lossy HPC data
compression with SZ. In IPDPS 2016, Chicago, IL, USA,
May 23-27, 2016, pages 730–739, 2016.

[10] P. J. Gleckler, P. J. Durack, R. J. Stouffer, G. C. Johnson, and
C. E. Forest. Industrial-era global ocean heat uptake doubles
in recent decades. Nature Climate Change, 2016.

[11] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Ku, C. Chang,
S. Klasky, R. Latham, R. B. Ross, and N. F. Samatova.
ISABELA for effective in situ compression of scientific data.
Concurrency and Computation: Practice and Experience,
25(4):524–540, 2013.

[12] P. Lindstrom. Fixed-rate compressed floating-point arrays.
IEEE Trans. Vis. Comput. Graph., 20(12):2674–2683, 2014.

[13] P. Lindstrom and M. Isenburg. Fast and efficient compression
of floating-point data. IEEE transactions on visualization and
computer graphics, 12(5):1245–1250, 2006.

[14] P. Ratanaworabhan, J. Ke, and M. Burtscher. Fast lossless
compression of scientific floating-point data. In 2006 Data
Compression Conference (DCC 2006), 28-30 March 2006,
Snowbird, UT, USA, pages 133–142, 2006.

[15] N. Sasaki, K. Sato, T. Endo, and S. Matsuoka. Exploration
of lossy compression for application-level checkpoint/restart.
In IPDPS 2015, Hyderabad, India, May 25-29, 2015, pages
914–922, 2015.

[16] A. Wegener. Universal numerical encoder and profiler re-
duces computing’s memory wall with software, fpga, and soc
implementations. In DCC 2013, Snowbird, UT, USA, March
20-22, 2013, page 528, 2013.

[17] Z. Wu and N. E. Huang. A study of the characteristics
of white noise using the empirical mode decomposition
method. In Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, volume
460, pages 1597–1611, 2004.

First	50	coefficients

ATM

Hurricane

SZ																										

Compression	introduces	autocorrelation	that	was	not	there	before
We	want	as	little	(0)	autocorrelation	of	the	compression	error	as	possible	

SZ																										

SZ	introduce	a	much	lower	and	shorter	autocorrelation	compared	to	ZFP

Z-checker:	Preservation	of	Derivatives
Derivatives	(original	versus	decompressed)	for	the	ATM	dataset	using	SZ	1.4

First	derivatives	

Second	derivatives	

Original	 Decompressed

Compute	the	derivatives	on
each	point	of	the	original	and
Decompressed	dataset.

Plot	the	result.

Note	that	we	could	have	plotted
the	difference	instead	of	the	
two	figures	

à SZ	does	not	visually	alter	the	first	and	
second	derivatives

OK, So What?
Lossy Compression vs. Decimation

Image	from	Halo	finder	in	Cosmology	Simulation

Decimation	vs.	Compression	(Z-checker	analysis)
Lossless	Spatial	Decimation +	Linear	Interpolation	à The	most	common	reduction	technique
Lossy compression	with	SZ	1.4

ATM	dataset:	ATM	CLDLOW
Decimation/compression	factor:	6

à Much	better	rate-distortion	for	SZ
à Much	lower	autocorrelation	for	SZ
à Much	lower	spectral	alteration	for	SZ
àCompression	outperforms	decimation

Decimation	+	Linear	
Interpolation

20
40
60
80
100
120
140
160
180
200
220

0 5 10 15 20 25
Rate

PS
NR

Rate	distortion	

-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

1 11 21 31 41 51 61 71 81 91

AC
F

Lags

Decimation	+	Linear	Interpolation

SZ
Autocorrelation	of	the	reduction	error	

sz

0

0.005

0.01

0.015

0.02

1 21 41 61 81 101 121

Re
la
tiv

e	
di
ffe

re
nc
e	
of
	a
m
pl
itu

de
	

Frequency

Decimation	+	Linear	Interpolation

Spectral	distortion

~50dB

Links:
SZ: https://github.com/disheng222/SZ

Z-checker:	https://github.com/CODARcode/Z-checker

SC17	Tutorial	on	lossy compression	for	scientific	data:
http://sc17.supercomputing.org/presentation/?id=tut106&sess=sess205

Soon:	a	repository	with	reference	datasets,	compressors,	
configurations,	results

Conclusion
• Aggressive data	reduction	is	needed	and	will	be	critical	to	

advance	science
• All	IT	domains	use	lossy compression	when	data	becomes	too	

large
• Lossy compressors	are	available	for	scientific	data	(simulation	

and	instruments)	
• They	produce	excellent	results:	performance,	speed,	

distortions
• The current	popular	technique	of	decimation	is	far	inferior	to	

lossy compression

• As	we	progress	in	the	use	of	lossy compression	in	scientific	
application,	we	should	continue	developing	the	evaluation		
methodology	(metrics,	tools,	benchmarks,	etc.)

By	the	way,		
compression	is	
also	an	art

