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1. Need for Decision Making

• In many practical situations:

– we have several alternatives, and

– we need to select one of these alternatives.

• Examples:

– a person saving for retirement needs to find the best
way to invest money;

– a company needs to select a location for its new
plant;

– a designer must select one of several possible de-
signs for a new airplane;

– a medical doctor needs to select a treatment for a
patient.
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2. Need for Decision Making Under Uncertainty

• Decision making is easier if we know the exact conse-
quences of each alternative selection.

• Often, however:

– we only have an incomplete information about con-
sequences of different alternative, and

– we need to select an alternative under this uncer-
tainty.
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3. When Monetary Approach Is Appropriate

• In many situations, e.g., in financial and economic de-
cision making, the decision results:

– either in a money gain (or loss) and/or

– in the gain of goods that can be exchanged for
money or for other goods.

• In this case, we select an alternative which the highest
exchange value, i.e., the highest price u.

• Uncertainty means that we do not know the exact
prices.

• The simplest case is when we only know lower and
upper bounds on the price: u ∈ [u, u].
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4. Hurwicz Optimism-Pessimism Approach to De-
cision Making under Interval Uncertainty

• L. Hurwicz’s idea is to select an alternative s.t.

αH · u+ (1− αH) · u→ max .

• Here, αH ∈ [0, 1] described the optimism level of a
decision maker:

• αH = 1 means optimism;

• αH = 0 means pessimism;

• 0 < αH < 1 combines optimism and pessimism.

+ This approach works well in practice.

− However, this is a semi-heuristic idea.

? It is desirable to come up with an approach which can
be uniquely determined based first principles.
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5. Fair Price Approach: An Idea

• When we have a full information about an object, then:

– we can express our desirability of each possible sit-
uation

– by declaring a price that we are willing to pay to
get involved in this situation.

• Once these prices are set, we simply select the alterna-
tive for which the participation price is the highest.

• In decision making under uncertainty, it is not easy to
come up with a fair price.

• A natural idea is to develop techniques for producing
such fair prices.

• These prices can then be used in decision making, to
select an appropriate alternative.
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6. Case of Interval Uncertainty

• Ideal case: we know the exact gain u of selecting an
alternative.

• A more realistic case: we only know the lower bound
u and the upper bound u on this gain.

• Comment: we do not know which values u ∈ [u, u] are
more probable or less probable.

• This situation is known as interval uncertainty.

• We want to assign, to each interval [u, u], a number
P ([u, u]) describing the fair price of this interval.

• Since we know that u ≤ u, we have P ([u, u]) ≤ u.

• Since we know that u, we have u ≤ P ([u, u]).
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7. Case of Interval Uncertainty: Monotonicity

• Case 1: we keep the lower endpoint u intact but in-
crease the upper bound.

• This means that we:

– keeping all the previous possibilities, but

– we allow new possibilities, with a higher gain.

• In this case, it is reasonable to require that the corre-
sponding price not decrease:

if u = v and u < v then P ([u, u]) ≤ P ([v, v]).

• Case 2: we dismiss some low-gain alternatives.

• This should increase (or at least not decrease) the fair
price:

if u < v and u = v then P ([u, u]) ≤ P ([v, v]).
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8. Additivity: Idea

• Let us consider the situation when we have two conse-
quent independent decisions.

• We can consider two decision processes separately.

• We can also consider a single decision process in which
we select a pair of alternatives:

– the 1st alternative corr. to the 1st decision, and

– the 2nd alternative corr. to the 2nd decision.

• If we are willing to pay:

– the amount u to participate in the first process, and

– the amount v to participate in the second decision
process,

• then we should be willing to pay u + v to participate
in both decision processes.
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9. Additivity: Case of Interval Uncertainty

• About the gain u from the first alternative, we only
know that this (unknown) gain is in [u, u].

• About the gain v from the second alternative, we only
know that this gain belongs to the interval [v, v].

• The overall gain u + v can thus take any value from
the interval

[u, u] + [v, v]
def
= {u+ v : u ∈ [u, u], v ∈ [v, v]}.

• It is easy to check that

[u, u] + [v, v] = [u+ v, u+ v].

• Thus, the additivity requirement about the fair prices
takes the form

P ([u+ v, u+ v]) = P ([u, u]) + P ([v, v]).
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10. Fair Price Under Interval Uncertainty

• By a fair price under interval uncertainty, we mean a
function P ([u, u]) for which:

• u ≤ P ([u, u]) ≤ u for all u and u
(conservativeness);

• if u = v and u < v, then P ([u, u]) ≤ P ([v, v])
(monotonicity);

• (additivity) for all u, u, v, and v, we have

P ([u+ v, u+ v]) = P ([u, u]) + P ([v, v]).

• Theorem: Each fair price under interval uncertainty
has the form

P ([u, u]) = αH · u+ (1− αH) · u for some αH ∈ [0, 1].

• Comment: we thus get a new justification of Hurwicz
optimism-pessimism criterion.
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11. Proof: Main Ideas

• Due to monotonicity, P ([u, u]) = u.

• Due to monotonicity, αH
def
= P ([0, 1]) ∈ [0, 1].

• For [0, 1] = [0, 1/n]+ . . .+[0, 1/n] (n times), additivity
implies αH = n·P ([0, 1/n]), so P ([0, 1/n]) = αH ·(1/n).

• For [0,m/n] = [0, 1/n] + . . .+ [0, 1/n] (m times), addi-
tivity implies P ([0,m/n]) = αH · (m/n).

• For each real number r, for each n, there is an m
s.t. m/n ≤ r ≤ (m+ 1)/n.

• Monotonicity implies αH · (m/n) = P ([0,m/n]) ≤
P ([0, r]) ≤ P ([0, (m+ 1)/n]) = αH · ((m+ 1)/n).

• When n→∞, αH · (m/n)→ αH · r and
αH · ((m+ 1)/n)→ αH · r, hence P ([0, r]) = αH · r.

• For [u, u] = [u, u] + [0, u− u], additivity implies
P ([u, u]) = u+ αH · (u− u). Q.E.D.
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12. Case of Set-Valued Uncertainty

• In some cases:

– in addition to knowing that the actual gain belongs
to the interval [u, u],

– we also know that some values from this interval
cannot be possible values of this gain.

• For example:

– if we buy an obscure lottery ticket for a simple
prize-or-no-prize lottery from a remote country,

– we either get the prize or lose the money.

• In this case, the set of possible values of the gain con-
sists of two values.

• Instead of a (bounded) interval of possible values, we
can consider a general bounded set of possible values.
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13. Fair Price Under Set-Valued Uncertainty

• We want a function P that assigns, to every bounded
closed set S, a real number P (S), for which:

• P ([u, u]) = αH ·u+ (1−αH) ·u (conservativeness);

• P (S + S ′) = P (S) + P (S ′), where

S + S ′
def
= {s+ s′ : s ∈ S, s′ ∈ S ′} (additivity).

• Theorem: Each fair price under set uncertainty has the
form P (S) = αH · supS + (1− αH) · inf S.

• Proof: idea.

• {s, s} ⊆ S ⊆ [s, s], where s
def
= inf S and s

def
= supS;

• thus, [2s, 2s] = {s, s}+ [s, s] ⊆ S + [s, s] ⊆
[s, s] + [s, s] = [2s, 2s];

• so S + [s, s] = [2s, 2s], hence P (S) + P ([s, s]) =
P ([2s, 2s]), and

P (S) = (αH · (2s) + (1−αH) · (2s))− (αH · s+ (1−αH) · s).
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14. Case of Probabilistic Uncertainty

• Suppose that for some financial instrument, we know
a prob. distribution ρ(x) on the set of possible gains x.

• What is the fair price P for this instrument?

• Due to additivity, the fair price for n copies of this
instrument is n · P .

• According to the Large Numbers Theorem, for large n,
the average gain tends to the mean value

µ =

∫
x · ρ(x) dx.

• Thus, the fair price for n copies of the instrument is
close to n · µ: n · P ≈ n · µ.

• The larger n, the closer the averages. So, in the limit,
we get P = µ.
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15. Case of p-Box Uncertainty

• Probabilistic uncertainty means that for every x, we
know the value of the cdf F (x) = Prob(η ≤ x).

• In practice, we often only have partial information about
these values.

• In this case, for each x, we only know an interval
[F (x), F (x)] containing the actual (unknown) value F (x).

• The interval-valued function [F (x), F (x)] is known as
a p-box.

• What is the fair price of a p-box?

• The only information that we have about the cdf is
that F (x) ∈ [F (x), F (x)].

• For each possible F (x), for large n, n copies of the
instrument are ≈ equivalent to n·µ, w/ µ =

∫
x dF (x).
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16. Case of p-Box Uncertainty (cont-d)

• For each possible F (x), for large n, n copies of the
instrument are ≈ equivalent to n · µ, where

µ =

∫
x dF (x).

• For different F (x), values of µ for an interval
[
µ, µ

]
,

where µ =
∫
x dF (x) and µ =

∫
x dF (x).

• Thus, the price of a p-box is equal to the price of an
interval

[
µ, µ

]
.

• We already know that this price is equal to

αH · µ+ (1− αH) · µ.

• So, this is a fair price of a p-box.
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17. Case of Twin Intervals

• Sometimes, in addition to the interval [x, x], we also
have a “most probable” subinterval [m,m] ⊆ [x, x].

• For such “twin intervals”, addition is defined component-
wise:

([x, x], [m,m])+([y, y], [n, n]) = ([x+y, x+y], [m+n,m+n]).

• Thus, the additivity for additivity requirement about
the fair prices takes the form

P ([x+ y, x+ y], [m+ n,m+ n]) =

P ([x, x], [m,m]) + P ([y, y], [n, n]).
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18. Fair Price Under Twin Interval Uncertainty

• By a fair price under twin uncertainty, we mean a func-
tion P ([u, u], [m,m]) for which:

• u ≤ P ([u, u], [m,m]) ≤ u for all u ≤ m ≤ m ≤ u
(conservativeness);

• if u ≤ v, m ≤ n, m ≤ n, and u ≤ v, then
P ([u, u], [m,m]) ≤ P ([v, v], [n, n]) (monotonicity);

• for all u ≤ m ≤ m ≤ u and v ≤ n ≤ n ≤ v, we
have additivity:

P ([u+v, u+v], [m+n,m+m]) = P ([u, u], [m,m])+P ([v, v], [n, n]).

• Theorem: Each fair price under twin uncertainty has
the following form, for some αL, αu, αU ∈ [0, 1]:

P ([u, u], [m,m]) = m+αu·(m−m)+αU ·(U−m)+αL·(u−m).
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19. Case of Fuzzy Numbers

• An expert is often imprecise (“fuzzy”) about the pos-
sible values.

• For example, an expert may say that the gain is small.

• To describe such information, L. Zadeh introduced the
notion of fuzzy numbers.

• For fuzzy numbers, different values u are possible with
different degrees µ(u) ∈ [0, 1].

• The value w is a possible value of u+ v if:

• for some values u and v for which u+ v = w,

• u is a possible value of 1st gain, and

• v is a possible value of 2nd gain.

• If we interpret “and” as min and “or” (“for some”) as
max, we get Zadeh’s extension principle:

µ(w) = max
u,v:u+v=w

min(µ1(u), µ2(v)).
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20. Case of Fuzzy Numbers (cont-d)

• Reminder: µ(w) = max
u,v:u+v=w

min(µ1(u), µ2(v)).

• This operation is easiest to describe in terms of α-cuts

u(α) = [u−(α), u+(α)]
def
= {u : µ(u) ≥ α}.

• Namely, w(α) = u(α) + v(α), i.e.,

w−(α) = u−(α) + v−(α) and w+(α) = u+(α) + v+(α).

• For product (of probabilities), we similarly get

µ(w) = max
u,v:u·v=w

min(µ1(u), µ2(v)).

• In terms of α-cuts, we have w(α) = u(α) · v(α), i.e.,

w−(α) = u−(α) · v−(α) and w+(α) = u+(α) · v+(α).
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21. Fair Price Under Fuzzy Uncertainty

• We want to assign, to every fuzzy number s, a real
number P (s), so that:

• if a fuzzy number s is located between u and u,
then u ≤ P (s) ≤ u (conservativeness);

• P (u+ v) = P (u) + P (v) (additivity);

• if for all α, s−(α) ≤ t−(α) and s+(α) ≤ t+(α), then
we have P (s) ≤ P (t) (monotonicity);

• if µn uniformly converges to µ, then P (µn)→ P (µ)
(continuity).

• Theorem. The fair price is equal to

P (s) = s0+

∫ 1

0

k−(α) ds−(α)−
∫ 1

0

k+(α) ds+(α) for some k±(α).
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22. Discussion

•
∫
f(x) ·dg(x) =

∫
f(x) · g′(x) dx for a generalized func-

tion g′(x), hence for generalized K±(α), we have:

P (s) =

∫ 1

0

K−(α) · s−(α) dα +

∫ 1

0

K+(α) · s+(α) dα.

• Conservativeness means that∫ 1

0

K−(α) dα +

∫ 1

0

K+(α) dα = 1.

• For the interval [u, u], we get

P (s) =

(∫ 1

0

K−(α) dα

)
· u+

(∫ 1

0

K+(α) dα

)
· u.

• Thus, Hurwicz optimism-pessimism coefficient αH is
equal to

∫ 1

0 K
+(α) dα.

• In this sense, the above formula is a generalization of
Hurwicz’s formula to the fuzzy case.
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23. Monetary Approach Is Not Always Appropri-
ate

• In some situations, the result of the decision is the
decision maker’s own satisfaction.

• Examples:

– buying a house to live in,

– selecting a movie to watch.

• In such situations, monetary approach is not appropri-
ate.

• For example:

– a small apartment in downtown can be very expen-
sive,

– but many people prefer a cheaper – but more spa-
cious and comfortable – suburban house.
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24. Non-Monetary Decision Making: Traditional
Approach

• To make a decision, we must:

– find out the user’s preference, and

– help the user select an alternative which is the best
– according to these preferences.

• Traditional approach is based on an assumption that
for each two alternatives A′ and A′′, a user can tell:

– whether the first alternative is better for him/her;
we will denote this by A′′ < A′;

– or the second alternative is better; we will denote
this by A′ < A′′;

– or the two given alternatives are of equal value to
the user; we will denote this by A′ = A′′.
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25. The Notion of Utility

• Under the above assumption, we can form a natural
numerical scale for describing preferences.

• Let us select a very bad alternative A0 and a very good
alternative A1.

• Then, most other alternatives are better than A0 but
worse than A1.

• For every prob. p ∈ [0, 1], we can form a lottery L(p)
in which we get A1 w/prob. p and A0 w/prob. 1− p.

• When p = 0, this lottery simply coincides with the
alternative A0: L(0) = A0.

• The larger the probability p of the positive outcome
increases, the better the result:

p′ < p′′ implies L(p′) < L(p′′).
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26. The Notion of Utility (cont-d)

• Finally, for p = 1, the lottery coincides with the alter-
native A1: L(1) = A1.

• Thus, we have a continuous scale of alternatives L(p)
that monotonically goes from L(0) = A0 to L(1) = A1.

• Due to monotonicity, when p increases, we first have
L(p) < A, then we have L(p) > A.

• The threshold value is called the utility of the alterna-
tive A:

u(A)
def
= sup{p : L(p) < A} = inf{p : L(p) > A}.

• Then, for every ε > 0, we have

L(u(A)− ε) < A < L(u(A) + ε).

• We will describe such (almost) equivalence by ≡, i.e.,
we will write that A ≡ L(u(A)).
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27. Fast Iterative Process for Determining u(A)

• Initially: we know the values u = 0 and u = 1 such
that A ≡ L(u(A)) for some u(A) ∈ [u, u].

• What we do: we compute the midpoint umid of the
interval [u, u] and compare A with L(umid).

• Possibilities: A ≤ L(umid) and L(umid) ≤ A.

• Case 1: if A ≤ L(umid), then u(A) ≤ umid, so

u ∈ [u, umid].

• Case 2: if L(umid) ≤ A, then umid ≤ u(A), so

u ∈ [umid, u].

• After each iteration, we decrease the width of the in-
terval [u, u] by half.

• After k iterations, we get an interval of width 2−k which
contains u(A) – i.e., we get u(A) w/accuracy 2−k.
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28. How to Make a Decision Based on Utility Val-
ues

• Suppose that we have found the utilities u(A′), u(A′′),
. . . , of the alternatives A′, A′′, . . .

• Which of these alternatives should we choose?

• By definition of utility, we have:

• A ≡ L(u(A)) for every alternative A, and

• L(p′) < L(p′′) if and only if p′ < p′′.

• We can thus conclude that A′ is preferable to A′′ if and
only if u(A′) > u(A′′).

• In other words, we should always select an alternative
with the largest possible value of utility.

• Interval techniques can help in finding the optimizing
decision.
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29. How to Estimate Utility of an Action

• For each action, we usually know possible outcomes
S1, . . . , Sn.

• We can often estimate the prob. p1, . . . , pn of these out-
comes.

• By definition of utility, each situation Si is equiv. to a
lottery L(u(Si)) in which we get:

• A1 with probability u(Si) and

• A0 with the remaining probability 1− u(Si).

• Thus, the action is equivalent to a complex lottery in
which:

• first, we select one of the situations Si with proba-
bility pi: P (Si) = pi;

• then, depending on Si, we get A1 with probability
P (A1 |Si) = u(Si) and A0 w/probability 1− u(Si).
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30. How to Estimate Utility of an Action (cont-d)

• Reminder:

• first, we select one of the situations Si with proba-
bility pi: P (Si) = pi;

• then, depending on Si, we get A1 with probability
P (A1 |Si) = u(Si) and A0 w/probability 1− u(Si).

• The prob. of getting A1 in this complex lottery is:

P (A1) =
n∑
i=1

P (A1 |Si) · P (Si) =
n∑
i=1

u(Si) · pi.

• In the complex lottery, we get:

• A1 with prob. u =
n∑
i=1

pi · u(Si), and

• A0 w/prob. 1− u.

• So, we should select the action with the largest value
of expected utility u =

∑
pi · u(Si).
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31. Non-Uniqueness of Utility

• The above definition of utility u depends on A0, A1.

• What if we use different alternatives A′0 and A′1?

• Every A is equivalent to a lottery L(u(A)) in which we
get A1 w/prob. u(A) and A0 w/prob. 1− u(A).

• For simplicity, let us assume that A′0 < A0 < A1 < A′1.

• Then, A0 ≡ L′(u′(A0)) and A1 ≡ L′(u′(A1)).

• So, A is equivalent to a complex lottery in which:

1) we select A1 w/prob. u(A) and A0 w/prob. 1−u(A);

2) depending on Ai, we get A′1 w/prob. u′(Ai) and A′0
w/prob. 1− u′(Ai).

• In this complex lottery, we get A′1 with probability
u′(A) = u(A) · (u′(A1)− u′(A0)) + u′(A0).

• So, in general, utility is defined modulo an (increasing)
linear transformation u′ = a · u+ b, with a > 0.
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32. Subjective Probabilities

• In practice, we often do not know the probabilities pi
of different outcomes.

• For each event E, a natural way to estimate its subjec-
tive probability is to fix a prize (e.g., $1) and compare:

– the lottery `E in which we get the fixed prize if the
event E occurs and 0 is it does not occur, with

– a lottery `(p) in which we get the same amount
with probability p.

• Here, similarly to the utility case, we get a value ps(E)
for which, for every ε > 0:

`(ps(E)− ε) < `E < `(ps(E) + ε).

• Then, the utility of an action with possible outcomes

S1, . . . , Sn is equal to u =
n∑
i=1

ps(Ei) · u(Si).
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33. Beyond Traditional Decision Making: Towards
a More Realistic Description

• Previously, we assumed that a user can always decide
which of the two alternatives A′ and A′′ is better:

– either A′ < A′′,

– or A′′ < A′,

– or A′ ≡ A′′.

• In practice, a user is sometimes unable to meaningfully
decide between the two alternatives; denoted A′ ‖ A′′.

• In mathematical terms, this means that the preference
relation:

– is no longer a total (linear) order,

– it can be a partial order.
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34. From Utility to Interval-Valued Utility

• Similarly to the traditional decision making approach:

– we select two alternatives A0 < A1 and

– we compare each alternative A which is better than
A0 and worse than A1 with lotteries L(p).

• Since preference is a partial order, in general:

u(A)
def
= sup{p : L(p) < A} < u(A)

def
= inf{p : L(p) > A}.

• For each alternative A, instead of a single value u(A)
of the utility, we now have an interval [u(A), u(A)] s.t.:

– if p < u(A), then L(p) < A;

– if p > u(A), then A < L(p); and

– if u(A) < p < u(A), then A ‖ L(p).

• We will call this interval the utility of the alternative A.
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35. Interval-Valued Utilities and Interval-Valued
Subjective Probabilities

• To feasibly elicit the values u(A) and u(A), we:

1) starting w/[u, u] = [0, 1], bisect an interval s.t.
L(u) < A < L(u) until we find u0 s.t. A ‖ L(u0);

2) by bisecting an interval [u, u0] for which
L(u) < A ‖ L(u0), we find u(A);

3) by bisecting an interval [u0, u] for which
L(u0) ‖ A < L(u), we find u(A).

• Similarly, when we estimate the probability of an event E:

– we no longer get a single value ps(E);

– we get an interval
[
ps(E), ps(E)

]
of possible values

of probability.

• By using bisection, we can feasibly elicit the values
ps(E) and ps(E).
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36. Decision Making Under Interval Uncertainty

• Situation: for each possible decision d, we know the
interval [u(d), u(d)] of possible values of utility.

• Questions: which decision shall we select?

• Natural idea: select all decisions d0 that may be opti-
mal, i.e., which are optimal for some function

u(d) ∈ [u(d), u(d)].

• Problem: checking all possible functions is not feasible.

• Solution: the above condition is equivalent to an easier-
to-check one:

u(d0) ≥ max
d
u(d).

• Interval computations can help in describing the range
of all such d0.

• Remaining problem: in practice, we would like to select
one decision; which one should be select?
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37. Need for Definite Decision Making

• At first glance: if A′ ‖ A′′, it does not matter whether
we recommend alternative A′ or alternative A′′.

• Let us show that this is not a good recommendation.

• E.g., let A be an alternative about which we know
nothing, i.e., [u(A), u(A)] = [0, 1].

• In this case, A is indistinguishable both from a “good”
lottery L(0.999) and a “bad” lottery L(0.001).

• Suppose that we recommend, to the user, that A is
equivalent both to L(0.999) and to L(0.001).

• Then this user will feel comfortable:

– first, exchanging L(0.999) with A, and

– then, exchanging A with L(0.001).

• So, following our recommendations, the user switches
from a very good alternative to a very bad one.
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38. Need for Definite Decision Making (cont-d)

• The above argument does not depend on the fact that
we assumed complete ignorance about A:

– every time we recommend that the alternative A is
“equivalent” both to L(p) and to L(p′) (p < p′),

– we make the user vulnerable to a similar switch
from a better alternative L(p′) to a worse one L(p).

• Thus, there should be only a single value p for which
A can be reasonably exchanged with L(p).

• In precise terms:

– we start with the utility interval [u(A), u(A)], and

– we need to select a single u(A) for which it is rea-
sonable to exchange A with a lottery L(u).

• How can we find this value u(A)?
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39. Decisions under Interval Uncertainty: Hur-
wicz Optimism-Pessimism Criterion

• Reminder: we need to assign, to each interval [u, u], a
utility value u(u, u) ∈ [u, u].

• History: this problem was first handled in 1951, by the
future Nobelist Leonid Hurwicz.

• Notation: let us denote αH
def
= u(0, 1).

• Reminder: utility is determined modulo a linear trans-
formation u′ = a · u+ b.

• Reasonable to require: the equivalent utility does not
change with re-scaling: for a > 0 and b,

u(a · u− + b, a · u+ + b) = a · u(u−, u+) + b.

• For u− = 0, u+ = 1, a = u− u, and b = u, we get

u(u, u) = αH · (u− u) + u = αH · u+ (1− αH) · u.
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40. Hurwicz Optimism-Pessimism Criterion (cont)

• The expression αH ·u+ (1−αH) ·u is called optimism-
pessimism criterion, because:

– when αH = 1, we make a decision based on the
most optimistic possible values u = u;

– when αH = 0, we make a decision based on the
most pessimistic possible values u = u;

– for intermediate values αH ∈ (0, 1), we take a weighted
average of the optimistic and pessimistic values.

• According to this criterion:

– if we have several alternatives A′, . . . , with interval-
valued utilities [u(A′), u(A′)], . . . ,

– we recommend an alternative A that maximizes

αH · u(A) + (1− αH) · u(A).
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41. Which Value αH Should We Choose? An Ar-
gument in Favor of αH = 0.5

• Let us take an event E about which we know nothing.

• For a lottery L+ in which we get A1 if E and A0 oth-
erwise, the utility interval is [0, 1].

• Thus, the equiv. utility of L+ is αH ·1+(1−αH)·0 = αH .

• For a lottery L− in which we get A0 if E and A1 oth-
erwise, the utility is [0, 1], so equiv. utility is also αH .

• For a complex lottery L in which we select either L+ or
L− with probability 0.5, the equiv. utility is still αH .

• On the other hand, in L, we get A1 with probability
0.5 and A0 with probability 0.5.

• Thus, L = L(0.5) and hence, u(L) = 0.5.

• So, we conclude that αH = 0.5.
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42. Which Action Should We Choose?

• Suppose that an action has n possible outcomes S1, . . . , Sn,
with utilities [u(Si), u(Si)], and probabilities [p

i
, pi].

• We know that each alternative is equivalent to a simple
lottery with utility ui = αH · u(Si) + (1− αH) · u(Si).

• We know that for each i, the i-th event is equivalent
to pi = αH · pi + (1− αH) · p

i
.

• Thus, this action is equivalent to a situation in which
we get utility ui with probability pi.

• The utility of such a situation is equal to
n∑
i=1

pi · ui.

• Thus, the equivalent utility of the original action is
equivalent to

n∑
i=1

(
αH · pi + (1− αH) · p

i

)
·(αH · u(Si) + (1− αH) · u(Si)) .
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43. Observation: the Resulting Decision Depends
on the Level of Detail

• Let us consider a situation in which, with some prob. p,
we gain a utility u, else we get 0.

• The expected utility is p · u+ (1− p) · 0 = p · u.

• Suppose that we only know the intervals [u, u] and [p, p].

• The equivalent utility uk (k for know) is

uk = (αH · p+ (1− αH) · p) · (αH · u+ (1− αH) · u).

• If we only know that utility is from [p · u, p · u], then:

ud = αH · p · u+ (1− αH) · p · u (d for don’t know).

• Here, additional knowledge decreases utility:

ud − uk = αH · (1− αH) · (p− p) · (u− u) > 0.

• (This is maybe what the Book of Ecclesiastes meant
by “For with much wisdom comes much sorrow”?)
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44. Beyond Interval Uncertainty: Partial Info about
Probabilities

• Frequent situation:

– in addition to xi,

– we may also have partial information about the
probabilities of different values xi ∈ xi.

• An exact probability distribution can be described, e.g.,
by its cumulative distribution function

Fi(z) = Prob(xi ≤ z).

• A partial information means that instead of a single
cdf, we have a class F of possible cdfs.

• p-box (Scott Ferson):

– for every z, we know an interval F(z) = [F (z), F (z)];

– we consider all possible distributions for which, for
all z, we have F (z) ∈ F(z).
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45. Describing Partial Info about Probabilities:
Decision Making Viewpoint

• Problem: there are many ways to represent a probabil-
ity distribution.

• Idea: look for an objective.

• Objective: make decisions Ex[u(x, a)]→ max
a

.

• Case 1: smooth u(x).

• Analysis: we have u(x) = u(x0) + (x−x0) ·u′(x0) + . . .

• Conclusion: we must know moments to estimate E[u].

• Case of uncertainty: interval bounds on moments.

• Case 2: threshold-type u(x) (e.g., regulations).

• Conclusion: we need cdf F (x) = Prob(ξ ≤ x).

• Case of uncertainty: p-box [F (x), F (x)].
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46. Multi-Agent Cooperative Decision Making

• How to describe preferences: for each participant Pi,

we can determine the utility uij
def
= ui(Aj) of all Aj.

• Question: how to transform these utilities into a rea-
sonable group decision rule?

• Solution: was provided by another future Nobelist John
Nash.

• Nash’s assumptions:

– symmetry,

– independence from irrelevant alternatives, and

– scale invariance – under replacing function ui(A)
with an equivalent function a · ui(A),
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47. Nash’s Bargaining Solution (cont-d)

• Nash’s assumptions (reminder):

– symmetry,

– independence from irrelevant alternatives, and

– scale invariance.

• Nash’s result:

– the only group decision rule satisfying all these as-
sumptions

– is selecting an alternative A for which the product
n∏
i=1

ui(A) is the largest possible.

• Comment. the utility functions must be “scaled” s.t. the
“status quo” situation A(0) has utility 0:

ui(A)→ u′i(A)
def
= ui(A)− ui(A(0)).
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48. Multi-Agent Decision Making under Interval
Uncertainty

• Reminder: if we set utility of status quo to 0, then we
select an alternative A that maximizes

u(A) =
n∏
i=1

ui(A).

• Case of interval uncertainty: we only know intervals
[ui(A), ui(A)].

• First idea: find all A0 for which u(A0) ≥ max
A

u(A),

where

[u(A), u(A)]
def
=

n∏
i=1

[ui(A), ui(A)].

• Second idea: maximize uequiv(A)
def
=

n∏
i=1

uequivi (A).

• Interesting aspect: when we have a conflict situation
(e.g., in security games).
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49. Group Decision Making and Arrow’s Impos-
sibility Theorem

• In 1951, Kenneth J. Arrow published his famous result
about group decision making.

• This result that became one of the main reasons for his
1972 Nobel Prize.

• The problem:

– A group of n participants P1, . . . , Pn needs to select
between one of m alternatives A1, . . . , Am.

– To find individual preferences, we ask each partic-
ipant Pi to rank the alternatives Aj:

Aj1 �i Aj2 �i . . . �i Ajn.

– Based on these n rankings, we must form a single
group ranking (equivalence ∼ is allowed).
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50. Case of Two Alternatives Is Easy

• Simplest case:

– we have only two alternatives A1 and A2,

– each participant either prefers A1 or prefers A2.

• Solution: it is reasonable, for a group:

– to prefer A1 if the majority prefers A1,

– to prefer A2 if the majority prefers A2, and

– to claim A1 and A2 to be of equal quality for the
group (denoted A1 ∼ A2) if there is a tie.
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51. Case of Three or More Alternatives Is Not
Easy

• Arrow’s result: no group decision rule can satisfy the
following natural conditions.

• Pareto condition: if all participants prefer Aj to Ak,
then the group should also prefer Aj to Ak.

• Independence from Irrelevant Alternatives: the group
ranking of Aj vs. Ak should not depend on other Ais.

• Arrow’s theorem: every group decision rule which sat-
isfies these two condition is a dictatorship rule:

– the group accepts the preferences of one of the par-
ticipants as the group decision and

– ignores the preferences of all other participants.

• This violates symmetry: that the group decision rules
should not depend on the order of the participants.
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52. Beyond Arrow’s Impossibility Theorem

• Usual claim: Arrow’s Impossibility Theorem proves
that reasonable group decision making is impossible.

• Our claim: Arrow’s result is only valid if we have bi-
nary (“yes”-“no”) individual preferences.

• Fact: this information does not fully describe a per-
sons’ preferences.

• Example: the preference A1 � A2 � A3:

– it may indicate that a person strongly prefers A1

to A2, and strongly prefers A2 to A3, and

– it may also indicate that this person strongly prefers
A1 to A2, and at the same time, A2 ≈ A3.

• How can this distinction be described: researchers in
decision making use the notion of utility.
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53. Nash’s Solution as a Way to Overcome Ar-
row’s Paradox

• Situation: for each participant Pi (i = 1, . . . , n), we
know his/her utility ui(Aj) of Aj, j = 1, . . . ,m.

• Possible choices: lotteries p = (p1, . . . , pm) in which we

select Aj with probability pj ≥ 0,
m∑
j=1

pj = 1.

• Nash’s solution: among all the lotteries p, we select the
one that maximizes

n∏
i=1

ui(p), where ui(p) =
m∑
j=1

pj · ui(Aj).

• Generic case: no two vectors ui = (ui(A1), . . . , ui(Am))
are collinear.

• In this general case: Nash’s solution is unique.
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54. Sometimes It Is Beneficial to Cheat: An Ex-
ample

• Situation: participant P1 know the utilities of all the
other participants, but they don’t know his u1(B).

• Notation: let Am1
be P1’s best alternative:

u1(Am1
) ≥ u1(Aj) for all j 6= m1.

• How to cheat: P1 can force the group to select Am1
by

using a “fake” utility function u′1(A) for which

• u′1(Am1
) = 1 and

• u′1(Aj) = 0 for all j 6= m1.

• Why it works:

• when selecting Aj w/j 6= m1, we get
∏
ui(Aj) = 0;

• when selecting Am1
, we get

∏
ui(Aj) > 0.
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55. Cheating May Hurt the Cheater: an Observa-
tion

• A more typical situation: no one knows others’ utility
functions.

• Let P1 use the above false utility function u′1(A) for
which u′1(Am1

) = 1 and u′1(Aj) = 0 for all j 6= m1.

• Possibility: others use similar utilities with ui(Ami
) > 0

for some mi 6= m1 and ui(Aj) = 0 for j 6= mi.

• Then for every alternative Aj, Nash’s product is equal
to 0.

• From this viewpoint, all alternatives are equally good,
so each of them can be chosen.

• In particular, it may be possible that the group selects
an alternative Aq which is the worst for P1 – i.e., s.t.

u1(Aq) < u1(Aj) for all j 6= p.
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56. Case Study: Territorial Division

• Dividing a set (territory) A between n participants,

i.e., finding Xi s.t.
n⋃
i=1

Xi and Xi ∩Xj = ∅ for i 6= j.

• The utility functions have the form ui(X) =
∫
X vi(t) dt.

• Nash’s solution: maximize u1(X) · . . . · un(Xn).

• Assumption: P1 does not know ui(B) for i 6= 1.

• Choices: the participant P1 can report a fake utility
function v′1(t) 6= v1(t).

• For each v′1(t), we maximizes the product(∫
X1

v′1(t) dt

)
·
(∫

X2

v2(t) dt

)
· . . . ·

(∫
Xn

vn(t) dt

)
.

• Question: select v′1(t) that maximizes the gain

u(v′1, v1, v2, . . . , vn)
def
=

∫
X1

v′1(t) dt.
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57. For Territorial Division, It Is Beneficial to Re-
port the Correct Utilities: Result

• Hurwicz’s criterion u(A) = α · u−(A) + (1−α) · u+(A)
may sound arbitrary.

• For our problem: Hurwicz’s criterion means that we
select a utility function v′1(t) that maximizes

J(v′1)
def
= α · min

v2,...,vn
u(v′1, v1, v2, . . . , vn)+

(1− α) · max
v2,...,vn

u(v′1, v1, v2, . . . , vn).

• Theorem: when α > 0, the objective function J(v′1)
attains its largest possible value for v′1(t) = v1(t).

• Conclusion: unless we select pure optimism, it is best
to select v′1(t) = v1(t), i.e., to tell the truth.
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58. How to Find Individual Preferences from Col-
lective Decision Making: Inverse Problem of
Game Theory

• Situation: we have a group of n participants P1, . . . , Pn
that does not want to reveal its individual preferences.

• Example: political groups tend to hide internal dis-
agreements.

• Objective: detect individual preferences.

• Example: this is waht kremlinologies used to do.

• Assumption: the group uses Nash’s solution to make
decisions.

• We can: ask the group as a whole to compare different
alternatives.
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59. Comment

• Fact: Nash’s solution depends only on the product of
the utility functions.

• Corollary: in the best case,

– we will be able to determine n individual utility
functions

– without knowing which of these functions corre-
sponds to which individual.

• Comment: this is OK, because

– our main objective is to predict future behavior of
this group,

– and in this prediction, it is irrelevant who has which
utility function.
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60. How to Find Individual Preferences from Col-
lective Decision Making: Our Result

• Let uij = ui(Aj) denote i-th utility of j-th alternative.

• We assume that utility is normalized: ui(A0) = 0 for
status quo A0 and ui(A1) = 1 for some A1.

• According to Nash: p = (p1, . . . , pn) � q = (q1, . . . , qn)⇔
n∏
i=1

(
n∑
j=1

pj · uij

)
≤

n∏
i=1

(
n∑
j=1

qj · uij

)
.

• Theorem: if utilities uij and u′ij lead to the same pref-
erence �, then they differ only by permutation.

• Conclusion: we can determine individual preferences
from group decisions.

• An efficient algorithm for determining uij from � is
possible.



Need for Decision . . .

When Monetary . . .

Hurwicz Optimism- . . .

Fair Price Approach: . . .

Case of Interval . . .

Monetary Approach Is . . .

The Notion of Utility

Group Decision . . .

We Must Take . . .

Home Page

Title Page

JJ II

J I

Page 62 of 70

Go Back

Full Screen

Close

Quit

61. We Must Take Altruism and Love into Ac-
count

• Implicit assumption: the utility ui(Aj) of a participant
Pi depends only on what he/she gains.

• In real life: the degree of a person’s happiness also
depends on the degree of happiness of other people:

– Normally, this dependence is positive, i.e., we feel
happier if other people are happy.

– However, negative emotions such as jealousy are
also common.

• This idea was developed by another future Nobelist
Gary Becker: ui = u

(0)
i +

∑
j 6=i
αij · uj, where:

• u(0)i is the utility of person i that does not take
interdependence into account; and

• uj are utilities of other people j 6= i.
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62. Paradox of Love

• Case n = 2: u1 = u
(0)
1 + α12 · u2; u2 = u

(0)
2 + α21 · u1.

• Solution: u1 =
u
(0)
1 + α12 · u(0)2

1− α12 · α21
; u2 =

u
(0)
2 + α21 · u(0)1

1− α12 · α21
.

• Example: mutual affection means that α12 > 0 and
α21 > 0.

• Example: selfless love, when someone else’s happiness
means more than one’s own, corresponds to α12 > 1.

• Paradox:

• when two people are deeply in love with each other
(α12 > 1 and α21 > 1), then

• positive original pleasures u
(0)
i > 0 lead to ui < 0 –

i.e., to unhappiness.



Need for Decision . . .

When Monetary . . .

Hurwicz Optimism- . . .

Fair Price Approach: . . .

Case of Interval . . .

Monetary Approach Is . . .

The Notion of Utility

Group Decision . . .

We Must Take . . .

Home Page

Title Page

JJ II

J I

Page 64 of 70

Go Back

Full Screen

Close

Quit

63. Paradox of Love: Discussion

• Paradox – reminder:

• when two people are deeply in love with each other,
then

• positive original pleasures u
(0)
i > 0 lead to unhap-

piness.

• This may explain why people in love often experience
deep negative emotions.

• From this viewpoint, a situation when

• one person loves deeply and

• another rather allows him- or herself to be loved

may lead to more happiness than mutual passionate
love.
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64. Why Two and not Three?

• An ideal love is when each person treats other’s emo-
tions almost the same way as one’s own, i.e.,

α12 = α21 = α = 1− ε for a small ε > 0.

• For two people, from u
(0)
i > 0, we get ui > 0 – i.e., we

can still have happiness.

• For n ≥ 3, even for u
(0)
i = u(0) > 0, we get

ui =
u(0)

1− (1− ε) · (n− 1)
< 0, i.e., unhappiness.

• Corollary: if two people care about the same person
(e.g., his mother and his wife),

• all three of them are happier

• if there is some negative feeling (e.g., jealousy) be-
tween them.
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65. Emotional vs. Objective Interdependence

• We considered: emotional interdependence, when one’s
utility is determined by the utility of other people:

ui = u
(0)
i +

∑
j

αj · uj.

• Alternative: “objective” altruism, when one’s utility
depends on the material gain of other people:

ui = u
(0)
i +

∑
j

αj · u(0)j .

• In this approach: we care about others’ well-being, not
about their emotions.

• In this approach: no paradoxes arise, any degree of
altruism only improves the situation.

• The objective approach was proposed by yet another
Nobel Prize winner Amartya K. Sen.
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67. Fair Price Under Twin Uncertainty: Proof

• In general, we have

([u, u], [m,m]) = ([m,m], [m,m])+([0,m−m], [0,m−m])+

([0, u−m], [0, 0]) + ([u−m, 0], [0, 0)].

• So, due to additivity:

P ([u, u], [m,m]) = P ([m,m], [m,m])+P ([0,m−m], [0,m−m])+

P ([0, u−m], [0, 0]) + P ([u−m, 0], [0, 0)].

• Due to conservativeness, P ([m,m], [m,m]) = m.

• Similarly to the interval case, we can prove that:

• P ([0, r], [0, r]) = αu · r for some αu ∈ [0, 1],

• P ([0, r], [0, 0]) = αU · r for some αU ∈ [0, 1];

• P ([r, 0], [0, 0]) = αL · r for some αL ∈ [0, 1].

• Thus,

P ([u, u], [m,m]) = m+αu·(m−m)+αU ·(U−m)+αL·(u−m).
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68. Fuzzy Case: Proof

• Define µγ,u(0) = 1, µγ,u(x) = γ for x ∈ (0, u], and
µγ,u(x) = 0 for all other x.

• sγ,u(α) = [0, 0] for α > γ, sγ,u(α) = [0, u] for α ≤ γ.

• Based on the α-cuts, one check that sγ,u+v = sγ,u+sγ,v.

• Thus, due to additivity, P (sγ,u+v) = P (sγ,u) + P (sγ,v).

• Due to monotonicity, P (sγ,u) ↑ when u ↑.

• Thus, P (sγ,u) = k+(γ) · u for some value k+(γ).

• Let us now consider a fuzzy number s s.t. µ(x) = 0 for
x < 0, µ(0) = 1, then µ(x) continuously ↓ 0.

• For each sequence of values α0 = 1 < α1 < α2 < . . . <

αn−1 < αn = 1, we can form an approximation sn:

• s−n (α) = 0 for all α; and

• when α ∈ [αi, αi+1), then s+n (α) = s+(αi).



Need for Decision . . .

When Monetary . . .

Hurwicz Optimism- . . .

Fair Price Approach: . . .

Case of Interval . . .

Monetary Approach Is . . .

The Notion of Utility

Group Decision . . .

We Must Take . . .

Home Page

Title Page

JJ II

J I

Page 70 of 70

Go Back

Full Screen

Close

Quit

69. Fuzzy Case: Proof (cont-d)

• Here, sn = sαn−1,s+(αn−1) + sαn−2,s+(αn−2)−s+(αn−1) + . . . +
sα1,α1−α2

.

• Due to additivity, P (sn) = k+(αn−1) · s+(αn−1)+
k+(αn−2)·(s+(αn−2)−s+(αn−1))+. . .+k

+(α1)·(α1−α2).

• This is minus the integral sum for
∫ 1

0 k
+(γ) ds+(γ).

• Here, sn → s, so P (s) = limP (sn) =
∫ 1

0 k
+(γ) ds+(γ).

• Similarly, for fuzzy numbers s with µ(x) = 0 for x > 0,
we have P (s) =

∫ 1

0 k
−(γ) ds−(γ) for some k−(γ).

• A general fuzzy number g, with α-cuts [g−(α), g+(α)]
and a point g0 at which µ(g0) = 1, is the sum of g0,

• a fuzzy number with α-cuts [0, g+(α)− g0], and

• a fuzzy number with α-cuts [g0 − g−(α), 0].

• Additivity completes the proof.
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