
Energy Models for Applications on DVFS Processors
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Introduction and Motivation

Energy consumption is an important concern in today’s
consideration of parallel programs especially for HPC.

Several different energy acquisition methods based on hardware,
software and simulation approaches have been proposed in a large
variety of different setups.

Current commodity processors provide the dynamic
voltage-frequency scaling (DVFS) technique.
processors can dynamically adjust voltage and frequencies of cores
to reduce power consumption

Reducing the frequency leads to a smaller power consumption.
However, longer computation times result due to the reduced
frequency.

It would be valuable to be able to choose a suitable frequency
before running a larger HPC program.
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Introduction and Overview

We investigate two energy measurement techniques for DVFS
processors
hardware-based measurement with power-meters and RAPL sensors
accessing MSR hardware counters.

As application programs, we have chosen the SPEC CPU2006, the
PARSEC benchmarks and the SPLASH benchmarks, which
represent a broad range of sequential and multithreaded
application codes.

We also compare three different energy models for DVFS
concerning their ability to capture the energy consumption of the
benchmarks.
physical energy models and a new heuristic model

An experimental investigation is provided comparing the energy
prediction capabilities of the energy models.
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DVFS processors

Modern microprocessors such as the Intel Core i7 processors
incorporate a sophisticated power management technology
performance states (P-states), throttle states (T-states), idle states
(C-states) and sleep states (S-states)

P-states are predefined sets of frequency and voltage combinations at
which an active core can operate.

A C-state is an idle state in which parts of the processor are
powered down to save energy.
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Power measurement with power-meters (NI9205 device)

The NI9205 enables a fine-grain power measurement of different
components of a computer system.
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Detailed power measurement using the NI9205 device

Power acquisition and profiling with LabView

Challenge: relate the power data measured to the application
program whose energy consumption is to be determined;

User-configured modules operating in a client-server fashion had to
be written

Detailed measurement for different pins supplying different
components of the computer system.
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Example: PARSEC benchmark x264 on Core i7 Ivy Bridge
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Platforms for Experimental Evaluation

Core i7-2600 Xeon Core i7 4770
E3-1225V2

architecture Sandy Bridge Ivybridge Haswell
min. frequency 1.6 GHz 1.6 GHz 0.8 GHz
max. frequency 3.2 GHz 3.2 GHz 3.4 GHz

TDP 95 W 77 W 84 W
step size freq. 100 MHz 100 MHz 200 MHz
physical cores 4 4 4

hyberthreading yes no yes
virtual cores 8 4 8

L1 data cache 32 KByte 32 KByte 32 KByte
L2 cache 256 KByte 256 KByte 256 KByte

L3 shared cache 8 MByte 8 Mbytes 8 MByte
RAM size 8 GByte 8 GByte 8 GByte
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Power measurement with RAPL sensors

Runtime and energy measurements for different Intel Core i7
processors (Sandy Bridge, Ivy Bridge, Haswell).
access to Model Specific Registers (MSRs) via rdmsr and wrmsr
instructions

The RAPL (Running Average Power Limit) interface provides
mechanisms to control power consumption;

The MSRs provide information about the energy status of the PP0
and PP1 power planes via specific registers.

likwid-powermeter from the likwid tool-set (Version 3.0) to access
the MSRs.

The cpufreq set tool has been used to set the core frequencies.
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Comparison of the measurement techniques
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only the +12VDC EPS connector power is shown left
observation: the two alternative measurement techniques coincide
qualitatively and quantitatively for a wide range of frequencies
small difference as the 24 PIN 5V connector also supplies the CPU
(and other mainboard devices)
in the following: measurement with RAPL
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SPEC CPU2006 benchmarks
integer and floating-point benchmarks from different application areas
runtimes on Core i7 Haswell for integer benchmarks using different
frequencies:
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SPEC CPU2006 integer benchmarks:
power consumption on Haswell
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different applications lead to different power consumption
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SPEC CPU2006 integer benchmarks:
energy consumption on Haswell
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no large variation of the energy consumption with the frequency
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SPEC CPU2006 floating point benchmarks:
runtime on Haswell
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more-than-linear increase of the execution time for smaller frequencies
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SPEC CPU2006 floating point benchmarks:
power consumption on Haswell
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different applications lead to different power consumption
slightly larger power consumption as for the integer benchmarks
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SPEC CPU2006 floating point benchmarks:
energy consumption on Haswell
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PARSEC benchmarks – runtime Haswell
12 programs from different application areas
different parallel models for shared address spaces are used
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Execution time increases more than linearly for smaller frequencies
(below about 1.7 GHz).
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PARSEC – power consumption with varying frequency
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large variation of the power consumption for different benchmarks
Benchmarks with a sequential workload typically lead to smaller power
values
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PARSEC benchmarks – energy consumption Haswell
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smallest energy consumption between 2 GHz and 2.5 GHz
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Energy models with frequency scaling

Energy models usually take the dynamic power consumption and
the static power consumption into consideration.

The dynamic power consumption is related to the supply voltage
and the switching activity during the computing activity of the
processor.

The static power consumption is intended to capture the leakage
power consumption as well as the power consumption of peripheral
devices.

The total power consumption of the CPU is obtained as the sum of
these two components.

For DVFS processors, the power consumption depends on the
operational frequency f .
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Physical energy models

The energy consumption of an application program can be
described as E =

∫ tmax

t=t0
P(t) · dt.

The dynamic power consumption is often approximated by
Pdyn = α · CL · V 2 · f
α: switching probability; CL: load capacitance; V : supply voltage;
f : operational frequency.

Modeling of the static power consumption due to leakage power:
Pstatic = V · N · kdesign · Ileak
N: number of transistors; kdesign: design-dependent parameter;
Ileak: technology-dependent parameter.

The frequency scaling can be expressed by a dimensionless scaling
factor s ≥ 1, which describes f̃ < fmax as f̃ = fmax/s.

The frequency f depends linearly on the supply voltage V : V = β · f .

Thus, the dependence of the dynamic power on f is approximated
by Pdyn = γ · f 3 with γ = α · CL · β2.
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Scaling factors

Reducing the frequency by a scaling factor of s, i.e., using a different
frequency value f̃ = s−1 · f with s ≥ 1 and Ṽ = β · f̃ , leads to a
decrease of the dynamic power consumption since

P̃dyn = α · CL · Ṽ 2 · f̃
= α · CL · β2 · f̃ 3 = α · CL · β2 · s−3 · f 3
= α · CL · V 2 · f · s−3 = s−3 · Pdyn .

→ the dynamic power is decreased by a factor of s−3

Pdyn(s) = s−3 · Pdyn(1) (1)
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Sequential execution of tasks or programs

The sequential execution time CT (1) of a task T ∈ T increases
linearly with the scaling factor s;
→ the execution time is CT (1) · s.

The dynamic energy consumption ET
dyn of the task T executed on

one processor can be modeled as:

ET
dyn(s, 1) = Pdyn(s) · CT (1) · s = s−2 · ET

dyn(1, 1) (2)

The static energy consumption is modeled as:

ET
static(s, 1) = Pstatic · (CT (1) · s) = s · Estatic(1, 1) (3)

The total energy consumption for the execution of task T on one
processor is:

ET
total(s, 1) = ET

dyn(s, 1) + ET
static(s, 1)

= (s−2 · Pdyn(1) + s · Pstatic) · CT (1)
(4)
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Optimal scaling factor

The optimal scaling factor for a sequential execution of tasks can be
obtained by considering the power consumption

Qtotal(s) = s−2 · Pdyn(1) + s · Pstatic (5)

convex function since Q ′′(s) exists and Q ′′(s) ≥ 0

The optimal scaling factor minimizing the energy consumption
ET
total(s, 1) is

sopt =

(
2 · Pdyn(1)

Pstatic

)1/3

. (6)

Assuming that Pdyn(1) is independent of the computations performed,
sopt depends only on the characteristics of the specific processor.
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Optimal scaling factor

Example: Q(s) for typical values of Pdyn(1) and Pstatic :
Pstatic = 4W and Pdyn(1) = 20W → sopt = 2.15
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Modeling the static power consumption

For earlier processors, the static power consumption was considered
to be neglectable.

For recent processors, the static power consumption may be too
large to be ignored.

Model 1: static power depends linearly on the frequency:
Pstatic = δ · f with δ = N · kdesign · Ileak · β.

Model 2: static power is constant, independently of f .

Reducing the operational frequency of a processor by a scaling
factor of s, s ≥ 1, increases the execution time of a program by
the same factor.
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Heuristic energy model

A (new) heuristic model considers the entire power consumption and
uses least squares methods to derive a formula describing the power
consumption in closed form.

Observation from the exeriments: there is an almost linear
dependence of the power on the frequency f : Pheu(f ) = a + bf 1+ε

The parameter a can be interpreted as the static part of the power
consumption that does not change with the frequency.

The parameter b captures the dynamic part of the power
consumption that increases with the operational frequency of the
CPU.

For the parameter ε, several fixed values have been tested and the
computation of a and b is done by the least squares method.

Different benchmarks may have different values for these
parameters a and b due to their specific computational and memory
access behavior.
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Validating the energy models

Comparison of the measured energy values with energy values
predicted by the models for different frequencies.

For the analytical model, the parameters γ and δ have been
determined by curve fitting using the least squares method.

For different benchmarks, the resulting values for the parameters γ
and δ are quite similar for most of the benchmarks on the same
architecture (the difference is typically below 10 %).

Thus, in principle, the average of the parameters for the different
benchmarks could be used and would lead to a similar correspondence
between measured and predicted values.

For the different architectures, different values for the parameters γ
and δ result.

For the heuristic model, ε = 0.2 has been used.
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SPEC: Comparison for Haswell f = 2.5 GHz
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Rauber, Rünger, Schwind, Xu, Melzner Energy Models for Applications on DVFS Processors 2015 41 / 48



SPEC: Comparison for Haswell f = 0.8 GHz
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PARSEC: Comparison for Haswell f = 2.5 GHz
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Model 1: parameter γ (dynamic part) lies between 12 and 31 for different
benchmarks;
parameter δ (static part) lies between 7 and 13.5;
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PARSEC: Comparison for Haswell f = 0.8 GHz
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Observations

For most situations, both the analytical and the heuristic energy
models are well suited to describe the energy consumption of most
benchmark programs.
The deviations usually lie below 10%.

The two analytical models both provide reasonable predictions with
slight advantages for Model 1.

Using the analytical models, larger deviations between the measured
and predicted values can be observed for smaller frequencies on the
Haswell architecture.
The heuristic model leads to better predictions in this situation.

Only for smaller frequencies, there are some deviations between the
models. In this context, the heuristic model provides better
predictions.

Summary: the energy models are able to capture the energy
consumption with reasonable accuracy for most situations.
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Conclusions

Frequency scaling provides the possibility to choose an energy and
runtime efficient state for processing an application program.

We have studied various hardware, software and simulation
approaches.

Both measurement methods considered (power-meters, hardware
counters) provide qualitatively and quantitatively corresponding
data.

Large variation of power consumption for the different benchmarks;
speedup plays an important role
variations are smaller for sequential workloads

Energy models are suitable for an energy performance prediction.
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