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Do we need new principles of algorithm design

when optimizing energy or power instead of time 
(or storage)?



Do we need new principles of algorithm design

when optimizing energy or power instead of time 
(or storage)?


My answer: No — We have the main principles,

but they are even more important when the metric

changes, especially to energy instead of time.



I. Basic abstract models



1

2

3

D(n)

…

D(n) 
W(n) = total nodes

= critical path

E.g., JàJà (1992), Blelloch (1994), …



1

2

3

D(n)

…

D(n) 
W(n) = total nodes

= critical path

Slow memory

1

L words per 
transactionα latency


β bandwidth

2 3 p

C0 op/s per core

Fast memory 
(total size = Z)

…

Q(n; Z, L) = 
words transferred

+

E.g., JàJà (1992), Blelloch (1994), … E.g., Agarwal and Vitter (1988), …



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism

…

Example: Work-span (depth) model

E.g., JàJà (1992), Blelloch (1994), …

Desiderata:

    Work optimality 
    Maximal parallelism



C � C + A * B


Example: Matrix multiply 
(non-Strassen)

W (n)

D(n)
= ⌦

✓
n3

log

k n

◆

Parallelism



II. Moving from abstract to concrete (physical) costs



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

How much time to execute a DAG on P processors? 
(unit-cost operations)

T (n;P ) = ?



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…
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,D(n)
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How much time to execute a DAG on P processors?

(unit-cost operations)



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

Brent (1975)

T (n;P )  D(n) +
W (n)�D(n)

P

How much time to execute a DAG on P processors?

(unit-cost operations)



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

What is the speedup over the best sequential algorithm?

S⇤(n;P ) ⌘ T⇤(n)

T (n;P )
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D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

S⇤(n;P )  W⇤(n)

max
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W (n)
P , D(n)

o

What is the speedup over the best sequential algorithm?
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What is the speedup over the best sequential algorithm?



W(n) = work (total ops)


D(n) = span (critical path)
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What is the speedup over the best sequential algorithm?

Ideal (linear)



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

S⇤(n;P )  P ·min

⇢
W⇤(n)

W (n)
,
W⇤(n)/D(n)

P

�

What is the speedup over the best sequential algorithm?

Work-optimality



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

S⇤(n;P )  P ·min

⇢
W⇤(n)

W (n)
,
W⇤(n)/D(n)

P

�

What is the speedup over the best sequential algorithm?

Weak scalability



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

S⇤(n;P ) � W⇤(n)

D(n) + W (n)�D(n)
P

What is the speedup over the best sequential algorithm?



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

S⇤(n;P ) � P
P�1

W⇤(n)/D(n) +
W (n)
W⇤(n)

What is the speedup over the best sequential algorithm?



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

How much energy is required?



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

How much energy is required?

Time is a cost you may hide by overlap, e.g., parallelism.


Energy is a cost you must pay for every operation.



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

Energy ∝ Work

How much energy is required?



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

Energy ∝ Work 

Time ∝ Energy

How much energy is required?

T (n;P ) ⇠ W (n)

P



Flickr RoadBay

●

●●
●
●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●●●

●

●●
●●

●●

●

●●●●

●

●●●
●

●●

●

●●●●

●

●●●
●

●●

●

●

●
●

●

●
●

●
●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

0

5

10

15

20

0 50 100 150 0 50 100 150
sec

Joules

Execution energy is proportional to time (SSSP+GPU example)



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

How much power is required?



Power ≣ Energy / Time 
(average instantaneous)

W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

How much power is required?



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

�(n;P ) ⌘ ⇥(W (n))

T (n;P )

How much power is required?



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

�(n;P ) =
⇥ (T (n;P = 1))

T (n;P )
= ⇥ (S(n;P ))

How much power is required?



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

�(n;P ) =
⇥ (T (n;P = 1))

T (n;P )
= ⇥ (S(n;P ))

How much power is required?



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

�(n;P ) =
⇥ (T (n;P = 1))

T (n;P )
= ⇥ (S(n;P ))

How much power is required?



W(n) = work (total ops)


D(n) = span (critical path)


W(n) / D(n)  
= inherent parallelism…

⇒ One expects algorithmic trade-offs between time and power.

How much power is required?
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Summary so far: 
    Energy optimality ~ work optimality

    Time ~ energy

    Time and power trade-off


Assumes uniform time and energy costs. 

What if the costs are non-uniform?



(At least) two interesting cases: 

1. Operation (“op”) costs may change, e.g., under DVFS.

2. Ops differ in cost, e.g., computation vs. communication.



(At least) two interesting cases: 

1. Operation (“op”) costs may change, e.g., under DVFS.

2. Ops differ in cost, e.g., computation vs. communication.



W(n) = work (total ops)


Q(n; Z, L) = no. transfers


W(n) / (Q(n; Z, L) ⋅ L)  
= computational intensity

   (ops / words)

Example: External memory model

Slow memory

Fast memory 
(capacity = Z)

Core

L words

E.g., Agarwal and Vitter (1988), …

Desiderata:

    Work optimality 
    Maximal intensity



Example: Matrix multiply 
(non-Strassen)

Intensity

C � C + A * B


W (n)

Q(n;Z,L) · L = �(1)

C � C + A * B


W

Q · L = O
⇣�

Z
⌘
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Running time

Balance analysis — Kung (1986); Hockney & Curington (1989); Blelloch (1994); McCalpin (1995); Williams et al. (2009); Czechowski et al. (2011); …

W ⌘ # (fl)ops

Q ⌘ # mem. ops (mops) = Q(Z)

I ⌘ W

Q
= Intensity (flop:mop)

⌧
flop

⌘ time per (fl)op

⌧
mem

⌘ time per mop

B⌧ ⌘ ⌧
mem

⌧
flop

= Balance (flop:mop)

Slow memory

xPU

Fast memory 
(total size = Z)

Q mops

W (fl)ops τflop = time/flop

τmem = time/mop

W ⌘ # (fl)ops

Q ⌘ # mem. ops (mops) = Q(Z)

I ⌘ W

Q
= Intensity (flop:mop)

⌧
flop

⌘ time per (fl)op

⌧
mem

⌘ time per mop

B⌧ ⌘ ⌧
mem

⌧
flop

= Balance (flop:mop)
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Running energy

Balance analysis — Kung (1986); Hockney & Curington (1989); Blelloch (1994); McCalpin (1995); Williams et al. (2009); Czechowski et al. (2011); …

Slow memory

xPU

Fast memory 
(total size = Z)

Q mops

W (fl)ops εflop = energy/flop

εmem = energy/mop

W ⌘ # (fl)ops

Q ⌘ # mem. ops (mops) = Q(Z)

I ⌘ W

Q
= Intensity (flop:mop)

✏
flop

⌘ energy per (fl)op

✏
mem

⌘ energy per mop

B✏ ⌘ ✏
mem

✏
flop

= Energy balance (flop:mop)

W ⌘ # (fl)ops

Q ⌘ # mem. ops (mops) = Q(Z)

I ⌘ W

Q
= Intensity (flop:mop)

✏
flop

⌘ energy per (fl)op

✏
mem

⌘ energy per mop

B✏ ⌘ ✏
mem

✏
flop

= Energy balance (flop:mop)

hpcgarage.org/ppam15

http://hpcgarage.org/pp14
http://hpcgarage.org/ppam15


1/32

1/16

1/8

1/4

1/2

1

3.6 14

GFLOP/J
GFLOP/s

1/2 1 2 4 8 16 32 64 128
Intensity (FLOP:Byte)

R
el

at
ive

 p
er

fo
rm

an
ce

flop:byteflop:byte

J. Choi, D. Bedard, R. Fowler, R. Vuduc. “A roofline model of energy.” IPDPS (2013).

hpcgarage.org/ppam15

http://hpcgarage.org/ppam15


1/32

1/16

1/8

1/4

1/2

1

3.6 14

GFLOP/J
GFLOP/s

1/2 1 2 4 8 16 32 64 128
Intensity (FLOP:Byte)

R
el

at
ive

 p
er

fo
rm

an
ce

flop:byteflop:byte

J. Choi, D. Bedard, R. Fowler, R. Vuduc. “A roofline model of energy.” IPDPS (2013).

hpcgarage.org/ppam15

Roofline
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For real systems, the model should account for 
“constant power” and “power capping.”

Powerline Roofline

1/16

1/8

1/4

1/2

1

2

1 2 4 8 16 32 64 1 2 4 8 16 32 64
Intensity (flop:byte)

N
or

m
al

ize
d 

Va
lu

e

hpcgarage.org/ppam15

http://hpcgarage.org/pp14
http://hpcgarage.org/ppam15


hpcgarage.org/ppam15

For real systems, the model should account for 
“constant power” and “power capping.”
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For real systems, the model should account for 
“constant power” and “power capping.”

Powerline Roofline
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Sara Karamati, Jeff Young (PhD), R. Vuduc

III. Case study: Single-source shortest path



๏ Consider two implementation variants* 
๏ “Bellman-Ford-like” — Highly parallel but not work-optimal 

๏ “Delta-stepping-like” — Tunable work-parallelism tradeoff 

๏ No preprocessing shortcuts, a la PHAST** 

๏ Both are tuned* for a GPU and we run them on an NVIDIA Jetson TK1, which has 
tunable core frequencies (10x) and memory frequencies (3x)

* These are GunRock implementations of Davidson, Baxter, Garland, and Owens (IPDPS’14) 
** Delling et al. “PHAST: Hardware-accelerated shortest path trees” (JPDC’10)
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Oded Green, Marat Dukhan, RV. “Branch-avoiding graph algorithms.” In SPAA’15. 
+ Post-paper analysis help from Anita Zakrzewska

IV. Case study: Branch-avoidance
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Shiloach-Vishkin algorithm to compute 
  connected components (as labels) 

forall v ∈ V do

  label[v] ← int(v)


while … do

   forall v ∈ V do

      forall (v, u) ∈ E do

         if label[v] < label[u] then

            label[v] ← label[u]

O. Green, M. Dukhan, R. Vuduc. “Branch-avoiding graph algorithms.” In SPAA’15.
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Branch-based (original): 

forall v ∈ V do

  label[v] ← int(v)


while … do

   forall v ∈ V do

      forall (v, u) ∈ E do

         if label[u] < label[v] then

            label[v] ← label[u]

O. Green, M. Dukhan, R. Vuduc. “Branch-avoiding graph algorithms.” In SPAA’15.

Branch-avoiding: 

forall v ∈ V do

  label[v] ← int(v)


while … do

   forall v ∈ V do

      forall (v, u) ∈ E do

         flag ← (label[u] < label[v])

         cmov (label[v], label[u], flag)
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O. Green, M. Dukhan, R. Vuduc. “Branch-avoiding graph algorithms.” In SPAA’15.



Summary

๏ The key high-level claim of this talk is that “classical” principles of algorithm and 
software design are not only relevant, but even more important when considering 
metrics beyond time, such as energy and power. 

๏ My main suggested direction for future research is to explore work-X tradeoffs, 
where X in this talk included communication, parallelism, and branching behavior, 
but there may be many others!


