
hpcgarage.org/ppam15

Algorithmic time, energy, and power trade-offs
in graph computations (?)
Sara Karamati · Jeff Young · Jee Choi [IBM Research] · Richard (Rich) Vuduc
· Oded Green [Bader lab @ GT]· Marat Dukhan · Anita Zakrzewska [Bader lab @ GT]

September 7, 2015 — 11th Int’l. Conf. Parallel Processing and Applied Mathematics (PPAM) — http://ppam.pl

http://hpcgarage.org/hpdc-ibm15
http://ppam.pl

Do we need new principles of algorithm design

when optimizing energy or power instead of time
(or storage)?

Do we need new principles of algorithm design

when optimizing energy or power instead of time
(or storage)?

My answer: No — We have the main principles,

but they are even more important when the metric

changes, especially to energy instead of time.

I. Basic abstract models

1

2

3

D(n)

…

D(n)
W(n) = total nodes

= critical path

E.g., JàJà (1992), Blelloch (1994), …

1

2

3

D(n)

…

D(n)
W(n) = total nodes

= critical path

Slow memory

1

L words per
transactionα latency

β bandwidth

2 3 p

C0 op/s per core

Fast memory
(total size = Z)

…

Q(n; Z, L) =
words transferred

+

E.g., JàJà (1992), Blelloch (1994), … E.g., Agarwal and Vitter (1988), …

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism

…

Example: Work-span (depth) model

E.g., JàJà (1992), Blelloch (1994), …

Desiderata:

 Work optimality
 Maximal parallelism

C � C + A * B

Example: Matrix multiply
(non-Strassen)

W (n)

D(n)
= ⌦

✓
n3

log

k n

◆

Parallelism

II. Moving from abstract to concrete (physical) costs

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

How much time to execute a DAG on P processors?
(unit-cost operations)

T (n;P) = ?

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

T (n;P) � max

⇢
W (n)

P
,D(n)

�

How much time to execute a DAG on P processors?

(unit-cost operations)

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

Brent (1975)

T (n;P) D(n) +
W (n)�D(n)

P

How much time to execute a DAG on P processors?

(unit-cost operations)

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

What is the speedup over the best sequential algorithm?

S⇤(n;P) ⌘ T⇤(n)

T (n;P)

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

S⇤(n;P) W⇤(n)

max

n

W (n)
P , D(n)

o

What is the speedup over the best sequential algorithm?

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

S⇤(n;P) P ·min

⇢
W⇤(n)

W (n)
,
W⇤(n)/D(n)

P

�

What is the speedup over the best sequential algorithm?

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

S⇤(n;P) P ·min

⇢
W⇤(n)

W (n)
,
W⇤(n)/D(n)

P

�

What is the speedup over the best sequential algorithm?

Ideal (linear)

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

S⇤(n;P) P ·min

⇢
W⇤(n)

W (n)
,
W⇤(n)/D(n)

P

�

What is the speedup over the best sequential algorithm?

Work-optimality

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

S⇤(n;P) P ·min

⇢
W⇤(n)

W (n)
,
W⇤(n)/D(n)

P

�

What is the speedup over the best sequential algorithm?

Weak scalability

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

S⇤(n;P) � W⇤(n)

D(n) + W (n)�D(n)
P

What is the speedup over the best sequential algorithm?

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

S⇤(n;P) � P
P�1

W⇤(n)/D(n) +
W (n)
W⇤(n)

What is the speedup over the best sequential algorithm?

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

How much energy is required?

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

How much energy is required?

Time is a cost you may hide by overlap, e.g., parallelism.

Energy is a cost you must pay for every operation.

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

Energy ∝ Work

How much energy is required?

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

Energy ∝ Work

Time ∝ Energy

How much energy is required?

T (n;P) ⇠ W (n)

P

Flickr RoadBay

●

●●
●
●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●●●

●

●●
●●

●●

●

●●●●

●

●●●
●

●●

●

●●●●

●

●●●
●

●●

●

●

●
●

●

●
●

●
●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

0

5

10

15

20

0 50 100 150 0 50 100 150
sec

Joules

Execution energy is proportional to time (SSSP+GPU example)

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

How much power is required?

Power ≣ Energy / Time
(average instantaneous)

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

How much power is required?

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

�(n;P) ⌘ ⇥(W (n))

T (n;P)

How much power is required?

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

�(n;P) =
⇥ (T (n;P = 1))

T (n;P)
= ⇥ (S(n;P))

How much power is required?

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

�(n;P) =
⇥ (T (n;P = 1))

T (n;P)
= ⇥ (S(n;P))

How much power is required?

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

�(n;P) =
⇥ (T (n;P = 1))

T (n;P)
= ⇥ (S(n;P))

How much power is required?

W(n) = work (total ops)

D(n) = span (critical path)

W(n) / D(n)  
= inherent parallelism…

⇒ One expects algorithmic trade-offs between time and power.

How much power is required?

Flickr RoadBay

●

●●●●

●
●●
●●

●

●

●

●●●●

●
●●
●●

●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

0

10

20

30

1.0 1.2 1.4 1.6 1.8 1.0 1.2 1.4 1.6 1.8
Relative power

Sp
ee

du
p

Speedup increases with additional power (SSSP+GPU example)

Summary so far:
 Energy optimality ~ work optimality

 Time ~ energy

 Time and power trade-off

Assumes uniform time and energy costs.

What if the costs are non-uniform?

(At least) two interesting cases:

1. Operation (“op”) costs may change, e.g., under DVFS.

2. Ops differ in cost, e.g., computation vs. communication.

(At least) two interesting cases:

1. Operation (“op”) costs may change, e.g., under DVFS.

2. Ops differ in cost, e.g., computation vs. communication.

W(n) = work (total ops)

Q(n; Z, L) = no. transfers

W(n) / (Q(n; Z, L) ⋅ L)  
= computational intensity

 (ops / words)

Example: External memory model

Slow memory

Fast memory
(capacity = Z)

Core

L words

E.g., Agarwal and Vitter (1988), …

Desiderata:

 Work optimality
 Maximal intensity

Example: Matrix multiply
(non-Strassen)

Intensity

C � C + A * B

W (n)

Q(n;Z,L) · L = �(1)

C � C + A * B

W

Q · L = O
⇣�

Z
⌘

hpcgarage.org/ppam15

Running time

Balance analysis — Kung (1986); Hockney & Curington (1989); Blelloch (1994); McCalpin (1995); Williams et al. (2009); Czechowski et al. (2011); …

W ⌘ # (fl)ops

Q ⌘ # mem. ops (mops) = Q(Z)

I ⌘ W

Q
= Intensity (flop:mop)

⌧
flop

⌘ time per (fl)op

⌧
mem

⌘ time per mop

B⌧ ⌘ ⌧
mem

⌧
flop

= Balance (flop:mop)

Slow memory

xPU

Fast memory
(total size = Z)

Q mops

W (fl)ops τflop = time/flop

τmem = time/mop

W ⌘ # (fl)ops

Q ⌘ # mem. ops (mops) = Q(Z)

I ⌘ W

Q
= Intensity (flop:mop)

⌧
flop

⌘ time per (fl)op

⌧
mem

⌘ time per mop

B⌧ ⌘ ⌧
mem

⌧
flop

= Balance (flop:mop)

hpcgarage.org/ppam15

http://hpcgarage.org/pp14
http://hpcgarage.org/ppam15

hpcgarage.org/ppam15

Running energy

Balance analysis — Kung (1986); Hockney & Curington (1989); Blelloch (1994); McCalpin (1995); Williams et al. (2009); Czechowski et al. (2011); …

Slow memory

xPU

Fast memory
(total size = Z)

Q mops

W (fl)ops εflop = energy/flop

εmem = energy/mop

W ⌘ # (fl)ops

Q ⌘ # mem. ops (mops) = Q(Z)

I ⌘ W

Q
= Intensity (flop:mop)

✏
flop

⌘ energy per (fl)op

✏
mem

⌘ energy per mop

B✏ ⌘ ✏
mem

✏
flop

= Energy balance (flop:mop)

W ⌘ # (fl)ops

Q ⌘ # mem. ops (mops) = Q(Z)

I ⌘ W

Q
= Intensity (flop:mop)

✏
flop

⌘ energy per (fl)op

✏
mem

⌘ energy per mop

B✏ ⌘ ✏
mem

✏
flop

= Energy balance (flop:mop)

hpcgarage.org/ppam15

http://hpcgarage.org/pp14
http://hpcgarage.org/ppam15

1/32

1/16

1/8

1/4

1/2

1

3.6 14

GFLOP/J
GFLOP/s

1/2 1 2 4 8 16 32 64 128
Intensity (FLOP:Byte)

R
el

at
ive

 p
er

fo
rm

an
ce

flop:byteflop:byte

J. Choi, D. Bedard, R. Fowler, R. Vuduc. “A roofline model of energy.” IPDPS (2013).

hpcgarage.org/ppam15

http://hpcgarage.org/ppam15

1/32

1/16

1/8

1/4

1/2

1

3.6 14

GFLOP/J
GFLOP/s

1/2 1 2 4 8 16 32 64 128
Intensity (FLOP:Byte)

R
el

at
ive

 p
er

fo
rm

an
ce

flop:byteflop:byte

J. Choi, D. Bedard, R. Fowler, R. Vuduc. “A roofline model of energy.” IPDPS (2013).

hpcgarage.org/ppam15

Roofline

http://hpcgarage.org/ppam15

1/32

1/16

1/8

1/4

1/2

1

3.6 14

GFLOP/J
GFLOP/s

1/2 1 2 4 8 16 32 64 128
Intensity (FLOP:Byte)

R
el

at
ive

 p
er

fo
rm

an
ce

flop:byteflop:byte

J. Choi, D. Bedard, R. Fowler, R. Vuduc. “A roofline model of energy.” IPDPS (2013).

hpcgarage.org/ppam15

Roofline

“Arch line”

http://hpcgarage.org/ppam15

1

2

4

8
3.6 14 5.0

4.0

1.0

0.5 1 2 4 8 16 32 64 128 256 512
Intensity (flop:byte)Po

we
r,

re
la

tiv
e

to
 fl

op
−p

ow
er

“Power line”

(average power)

flop:byte flop:byte

hpcgarage.org/ppam15

J. Choi, D. Bedard, R. Fowler, R. Vuduc. “A roofline model of energy.” IPDPS (2013).

http://hpcgarage.org/ppam15

hpcgarage.org/ppam15

For real systems, the model should account for
“constant power” and “power capping.”

Powerline Roofline

1/16

1/8

1/4

1/2

1

2

1 2 4 8 16 32 64 1 2 4 8 16 32 64
Intensity (flop:byte)

N
or

m
al

ize
d

Va
lu

e

hpcgarage.org/ppam15

http://hpcgarage.org/pp14
http://hpcgarage.org/ppam15

hpcgarage.org/ppam15

For real systems, the model should account for
“constant power” and “power capping.”

Powerline Roofline

1/16

1/8

1/4

1/2

1

2

1 2 4 8 16 32 64 1 2 4 8 16 32 64
Intensity (flop:byte)

N
or

m
al

ize
d

Va
lu

e
π0 : Constant

hpcgarage.org/ppam15

http://hpcgarage.org/pp14
http://hpcgarage.org/ppam15

hpcgarage.org/ppam15

For real systems, the model should account for
“constant power” and “power capping.”

Powerline Roofline

1/16

1/8

1/4

1/2

1

2

1 2 4 8 16 32 64 1 2 4 8 16 32 64
Intensity (flop:byte)

N
or

m
al

ize
d

Va
lu

e
π0 : Constant

∆π : Cap

hpcgarage.org/ppam15

http://hpcgarage.org/pp14
http://hpcgarage.org/ppam15

16 Gflop/J
4.0 Tflop/s [81%], 240 GB/s [83%]

120 W (const) + 160 W (cap) [99%]

Cap

Memory

Compute

15 Gflop/J
3.0 Tflop/s [86%], 160 GB/s [82%]

66 W (const) + 140 W (cap) [100%]

Cap

Memory

Compute

11 Gflop/J
2.0 Tflop/s [100%], 180 GB/s [57%]
180 W (const) + 36 W (cap) [100%]

Cap
Memory

Compute

8.8 Gflop/J
270 Gflop/s [100%], 15 GB/s [60%]

10 W (const) + 18 W (cap) [91%]

Cap

Memory

8.1 Gflop/J
33 Gflop/s [46%], 8.4 GB/s [66%]

1.3 W (const) + 4.8 W (cap) [88%]

CapMemory

Compute

6.4 Gflop/J
100 Gflop/s [95%], 8.7 GB/s [81%]
16 W (const) + 3.2 W (cap) [100%]

CapMemory

Compute

5.4 Gflop/J
1.4 Tflop/s [88%], 170 GB/s [89%]

120 W (const) + 150 W (cap) [94%]

Cap

Memory

Compute

3.2 Gflop/J
56 Gflop/s [97%], 18 GB/s [70%]

17 W (const) + 7.4 W (cap) [98%]

Cap

Compute

2.5 Gflop/J
9.5 Gflop/s [99%], 1.3 GB/s [40%]
3.5 W (const) + 1.2 W (cap) [95%]

Cap

Memory
Compute

2.2 Gflop/J
16 Gflop/s [58%], 3.9 GB/s [31%]

5.5 W (const) + 2.0 W (cap) [97%]

Cap

Memory Compute

650 Mflop/J
13 Gflop/s [98%], 3.3 GB/s [31%]
20 W (const) + 1.4 W (cap) [98%]

Cap
Compute

620 Mflop/J
99 Gflop/s [93%], 19 GB/s [74%]

120 W (const) + 44 W (cap) [99%]

Cap

Memory Compute

GTX Titan GTX 680 Xeon Phi NUC GPU Arndale GPU APU GPU

GTX 580 NUC CPU PandaBoard ES Arndale CPU APU CPU Desktop CPU

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512
Intensity (single−precision flop:Byte)

Po
we

r
[n

or
m

al
ize

d]

“Desktop GPU” “Desktop xPU” “Mobile GPU” “APU GPU”

“Desktop GPU” “Mobile CPU” “Mobile CPU” “Mobile CPU” “APU CPU” “Desktop CPU”

“Desktop GPU” “Mobile GPU”

16 Gflop/J
4.0 Tflop/s [81%], 240 GB/s [83%]

120 W (const) + 160 W (cap) [99%]

Cap

Memory

Compute

15 Gflop/J
3.0 Tflop/s [86%], 160 GB/s [82%]

66 W (const) + 140 W (cap) [100%]

Cap

Memory

Compute

11 Gflop/J
2.0 Tflop/s [100%], 180 GB/s [57%]
180 W (const) + 36 W (cap) [100%]

Cap
Memory

Compute

8.8 Gflop/J
270 Gflop/s [100%], 15 GB/s [60%]

10 W (const) + 18 W (cap) [91%]

Cap

Memory

8.1 Gflop/J
33 Gflop/s [46%], 8.4 GB/s [66%]

1.3 W (const) + 4.8 W (cap) [88%]

CapMemory

Compute

6.4 Gflop/J
100 Gflop/s [95%], 8.7 GB/s [81%]
16 W (const) + 3.2 W (cap) [100%]

CapMemory

Compute

5.4 Gflop/J
1.4 Tflop/s [88%], 170 GB/s [89%]

120 W (const) + 150 W (cap) [94%]

Cap

Memory

Compute

3.2 Gflop/J
56 Gflop/s [97%], 18 GB/s [70%]

17 W (const) + 7.4 W (cap) [98%]

Cap

Compute

2.5 Gflop/J
9.5 Gflop/s [99%], 1.3 GB/s [40%]
3.5 W (const) + 1.2 W (cap) [95%]

Cap

Memory
Compute

2.2 Gflop/J
16 Gflop/s [58%], 3.9 GB/s [31%]

5.5 W (const) + 2.0 W (cap) [97%]

Cap

Memory Compute

650 Mflop/J
13 Gflop/s [98%], 3.3 GB/s [31%]
20 W (const) + 1.4 W (cap) [98%]

Cap
Compute

620 Mflop/J
99 Gflop/s [93%], 19 GB/s [74%]

120 W (const) + 44 W (cap) [99%]

Cap

Memory Compute

GTX Titan GTX 680 Xeon Phi NUC GPU Arndale GPU APU GPU

GTX 580 NUC CPU PandaBoard ES Arndale CPU APU CPU Desktop CPU

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512
Intensity (single−precision flop:Byte)

Po
we

r
[n

or
m

al
ize

d]

“Desktop GPU” “Desktop xPU” “Mobile GPU” “APU GPU”

“Desktop GPU” “Mobile CPU” “Mobile CPU” “Mobile CPU” “APU CPU” “Desktop CPU”

16 Gflop/J, 1.3 GB/J
4.0 Tflop/s [81%], 240 GB/s [83%]

120 W (const) + 160 W (cap) [99%]

Cap

Memory

Compute

8.1 Gflop/J, 1.5 GB/J
33 Gflop/s [46%], 8.4 GB/s [66%]

1.3 W (const) + 4.8 W (cap) [88%]

Cap
Memory

Compute

GTX Titan Arndale GPU

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512
Intensity (single−precision flop:Byte)

Po
we

r
[n

or
m

al
ize

d]

“Desktop GPU” “Mobile GPU”

16 Gflop/J
4.0 Tflop/s [81%], 240 GB/s [83%]

120 W (const) + 160 W (cap) [99%]

Cap

Memory

Compute

15 Gflop/J
3.0 Tflop/s [86%], 160 GB/s [82%]

66 W (const) + 140 W (cap) [100%]

Cap

Memory

Compute

11 Gflop/J
2.0 Tflop/s [100%], 180 GB/s [57%]
180 W (const) + 36 W (cap) [100%]

Cap
Memory

Compute

8.8 Gflop/J
270 Gflop/s [100%], 15 GB/s [60%]

10 W (const) + 18 W (cap) [91%]

Cap

Memory

8.1 Gflop/J
33 Gflop/s [46%], 8.4 GB/s [66%]

1.3 W (const) + 4.8 W (cap) [88%]

CapMemory

Compute

6.4 Gflop/J
100 Gflop/s [95%], 8.7 GB/s [81%]
16 W (const) + 3.2 W (cap) [100%]

CapMemory

Compute

5.4 Gflop/J
1.4 Tflop/s [88%], 170 GB/s [89%]

120 W (const) + 150 W (cap) [94%]

Cap

Memory

Compute

3.2 Gflop/J
56 Gflop/s [97%], 18 GB/s [70%]

17 W (const) + 7.4 W (cap) [98%]

Cap

Compute

2.5 Gflop/J
9.5 Gflop/s [99%], 1.3 GB/s [40%]
3.5 W (const) + 1.2 W (cap) [95%]

Cap

Memory
Compute

2.2 Gflop/J
16 Gflop/s [58%], 3.9 GB/s [31%]

5.5 W (const) + 2.0 W (cap) [97%]

Cap

Memory Compute

650 Mflop/J
13 Gflop/s [98%], 3.3 GB/s [31%]
20 W (const) + 1.4 W (cap) [98%]

Cap
Compute

620 Mflop/J
99 Gflop/s [93%], 19 GB/s [74%]

120 W (const) + 44 W (cap) [99%]

Cap

Memory Compute

GTX Titan GTX 680 Xeon Phi NUC GPU Arndale GPU APU GPU

GTX 580 NUC CPU PandaBoard ES Arndale CPU APU CPU Desktop CPU

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512
Intensity (single−precision flop:Byte)

Po
we

r
[n

or
m

al
ize

d]

“Desktop GPU” “Desktop xPU” “Mobile GPU” “APU GPU”

“Desktop GPU” “Mobile CPU” “Mobile CPU” “Mobile CPU” “APU CPU” “Desktop CPU”

16 Gflop/J, 1.3 GB/J
4.0 Tflop/s [81%], 240 GB/s [83%]

120 W (const) + 160 W (cap) [99%]

Cap

Memory

Compute

8.1 Gflop/J, 1.5 GB/J
33 Gflop/s [46%], 8.4 GB/s [66%]

1.3 W (const) + 4.8 W (cap) [88%]

Cap
Memory

Compute

GTX Titan Arndale GPU

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512
Intensity (single−precision flop:Byte)

Po
we

r
[n

or
m

al
ize

d]

“Desktop GPU” “Mobile GPU”

Work-communication trade-offs

Abstract work-communication trade-offs

Algorithm 1 = (W,Q) versus Algorithm 2 = (fW,
Q

m
)

I ⌘ W

Q

Abstract work-communication trade-offs

Algorithm 1 = (W,Q) versus Algorithm 2 = (fW,
Q

m
)

I ⌘ W

Q

Less

communication

More work

Speedup �T =
T1,1

Tf,m

“Greenup” �E =
E1,1

Ef,m

Abstract work-communication trade-offs

Algorithm 1 = (W,Q) versus Algorithm 2 = (fW,
Q

m
)

I ⌘ W

Q

Less

communication

More work

Speedup �T =
T1,1

Tf,m

“Greenup” �E =
E1,1

Ef,m

Abstract work-communication trade-offs

�E > 1 =) f < 1 +
m� 1

m

B✏

I

A general “greenup” condition

Algorithm 1 = (W,Q) versus Algorithm 2 = (fW,
Q

m
)

I ⌘ W

Q

Less

communication

More work

1/32

1/16

1/8

1/4

1/2

1

3.6 14

GFLOP/J
GFLOP/s

1/2 1 2 4 8 16 32 64 128
Intensity (FLOP:Byte)

R
el

at
ive

 p
er

fo
rm

an
ce

flop:byteflop:byte

Algorithm 1

Balance estimates for a high-end NVIDIA Fermi in double-precision, according to Keckler et al. IEEE Micro (2011)

hpcgarage.org/ppam15

http://hpcgarage.org/pp14

1/32

1/16

1/8

1/4

1/2

1

3.6 14

GFLOP/J
GFLOP/s

1/2 1 2 4 8 16 32 64 128
Intensity (FLOP:Byte)

R
el

at
ive

 p
er

fo
rm

an
ce

flop:byteflop:byte

Algorithm 1

�E > 1 =) f < 1 +
B✏

B⌧

Balance estimates for a high-end NVIDIA Fermi in double-precision, according to Keckler et al. IEEE Micro (2011)

hpcgarage.org/ppam15

http://hpcgarage.org/pp14

Sara Karamati, Jeff Young (PhD), R. Vuduc

III. Case study: Single-source shortest path

๏ Consider two implementation variants*
๏ “Bellman-Ford-like” — Highly parallel but not work-optimal

๏ “Delta-stepping-like” — Tunable work-parallelism tradeoff

๏ No preprocessing shortcuts, a la PHAST**

๏ Both are tuned* for a GPU and we run them on an NVIDIA Jetson TK1, which has
tunable core frequencies (10x) and memory frequencies (3x)

* These are GunRock implementations of Davidson, Baxter, Garland, and Owens (IPDPS’14)
** Delling et al. “PHAST: Hardware-accelerated shortest path trees” (JPDC’10)

Flickr RoadBay

●

●●●●

●
●●
●●

●

●

●

●●●●

●
●●
●●

●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

0

10

20

30

1.0 1.2 1.4 1.6 1.8 1.0 1.2 1.4 1.6 1.8
Relative power

Sp
ee

du
p

Speedup increases with additional power (SSSP+GPU example)

Flickr RoadBay

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Power
Tim

e

BellFord−like Delta−like BellFord−like Delta−like
Implementation strategy

Normalized
value

SSSP: Time and Power

flickr road_BAY

BellFord−like

D=1
D=10D=25D=50 BellFord−likeD=1000000D=25000

D=500

D=5000008

128

2048

16777216 134217728 1073741824 16777216 134217728 1073741824
~ Work

~ Intensity
(op/word)

SSSP: How intensity evolves

Oded Green, Marat Dukhan, RV. “Branch-avoiding graph algorithms.” In SPAA’15.
+ Post-paper analysis help from Anita Zakrzewska

IV. Case study: Branch-avoidance

RESULTS

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

PNY NHM WSM SNB IVB HSW

E
ffi

ci
en

cy
 R

el
at

iv
e

to
 P

N
Y

Improvement in Energy Efficiency
Livermore Loops

SIMD Ext
Frontend
Backend
22nm-Process
32nm-Process
Base

1.5x

K. Czechowski et al. “Improving the energy-efficiency of big cores.” In ISCA’14.
(’07) (’13)

Kent Czechowski

Co-design ninja

Shiloach-Vishkin algorithm to compute
 connected components (as labels)

forall v ∈ V do

 label[v] ← int(v)

while … do

 forall v ∈ V do

 forall (v, u) ∈ E do

 if label[v] < label[u] then

 label[v] ← label[u]

O. Green, M. Dukhan, R. Vuduc. “Branch-avoiding graph algorithms.” In SPAA’15.

astro−ph audikw1 auto coAuthorsDBLP cond−mat−2003 cond−mat−2005 coPapersDBLP ecology1 ldoor power preferentialAttachment

0.0

0.3

0.6

0.9

1.2

SV

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Predicted values: Cache.references Cache.misses Branches Mispredictions

Predicted Cycles per instruction [Ivy Bridge]

astro−ph audikw1 auto coAuthorsDBLP cond−mat−2003 cond−mat−2005 coPapersDBLP ecology1 ldoor power preferentialAttachment

0.0

0.3

0.6

0.9

1.2

SV

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Predicted values: Cache.references Cache.misses Branches Mispredictions

Predicted Cycles per instruction [Ivy Bridge]

Measured

astro−ph audikw1 auto coAuthorsDBLP cond−mat−2003 cond−mat−2005 coPapersDBLP ecology1 ldoor power preferentialAttachment

0.0

0.3

0.6

0.9

1.2

SV

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Predicted values: Cache.references Cache.misses Branches Mispredictions

Predicted Cycles per instruction [Ivy Bridge]

Modeled

(counters + lasso regression)

astro−ph audikw1 auto coAuthorsDBLP cond−mat−2003 cond−mat−2005 coPapersDBLP ecology1 ldoor power preferentialAttachment

0.0

0.3

0.6

0.9

1.2

SV

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Predicted values: Cache.references Cache.misses Branches Mispredictions

Predicted Cycles per instruction [Ivy Bridge]

Branch-based (original):

forall v ∈ V do

 label[v] ← int(v)

while … do

 forall v ∈ V do

 forall (v, u) ∈ E do

 if label[u] < label[v] then

 label[v] ← label[u]

O. Green, M. Dukhan, R. Vuduc. “Branch-avoiding graph algorithms.” In SPAA’15.

Branch-avoiding:

forall v ∈ V do

 label[v] ← int(v)

while … do

 forall v ∈ V do

 forall (v, u) ∈ E do

 flag ← (label[u] < label[v])

 cmov (label[v], label[u], flag)

ldoor
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
● ●

1.12x

1.0

1.1

Ivy Bridge

0 20 40 60
Iteration

Implementation ●a aBranch−based Branch−avoiding

Shiloach−Vishkin Connected Components: Cycles
[Normalized to branch−based minimum]

Branch-avoiding

Branch-based

O. Green, M. Dukhan, R. Vuduc. “Branch-avoiding graph algorithms.” In SPAA’15.

Summary

๏ The key high-level claim of this talk is that “classical” principles of algorithm and
software design are not only relevant, but even more important when considering
metrics beyond time, such as energy and power.

๏ My main suggested direction for future research is to explore work-X tradeoffs,
where X in this talk included communication, parallelism, and branching behavior,
but there may be many others!

