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I. Past, present and future



Past:
The GPU market share
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Source: Jon Peddie Research consulting

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 1Q15 2Q15

Nvidia

AMD

50% 53% 51% 55% 63% 63% 64% 61% 64% 66% 65% 76% 77% 81%

45% 46% 45% 46% 37% 37% 36% 39% 36% 33% 35% 24% 22% 18%

Pre-CUDA era: 1-1 Stable period of 7 years: 2-1 3-1 4-1



Present:
Two hibernating movers wake up
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CCC Code names Commercial
series

Year
range

Manufacturing
process @ TSMC

Graphics
memory

1.0

1.1

1.2

1.3

2.0

2.1

3.0

3.5

3.7

5.0

5.2

G80 8xxx 2006-07 90 nm. DDR3

G84,6 G92,4,6,8 8xxx/9xxx 2007-09 80, 65, 55 nm. DDR2/DDR3

GT215,6,8 2xx 2009-10 40 nm. DDR2/DDR3

GT200 2xx 2008-09 65, 55 nm. DDR3

GF100, GF110 4xx/5xx 2010-11 40 nm. DDR3/DDR5

GF104,6,8, GF114,6,8,9 4xx/5xx/7xx 2010-13 40 nm. DDR3/DDR5

GK104,6,7 6xx/7xx 2012-14 28 nm. DDR3/DDR5

GK110, GK208 6xx/7xx/Titan 2013-14 28 nm. DDR3/DDR5

GK210 (2xGK110) Titan 2014 28 nm. DDR3/DDR5

GM107,8 7xx 2014-15 28 nm. DDR3/DDR5

GM200,4,6 9xx/Titan 2014-15 28 nm.          DDR5



Future: 
GTC’15 official announcements
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United States to build two
flagship supercomputers
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IBM POWER9 CPU + NVIDIA Volta GPU
NVLink High Speed Interconnect

>40 TFLOPS/Node   >3,400 Nodes

2017

SUMMIT SIERRA
150-300 

PFLOPS Peak 
Performance

> 100 PFLOPS 
Peak 

Performance

Major Step Forward on the Path to Exascale



Past, present and future in numerical 
accuracy: Trade-off vs. performance

[2010] Fermi: float (fp32) 2x faster than double (fp64).
[2012] Kepler: fp32 3x fp64.
[2014] Maxwell: fp32 32x fp64.
[2016] Pascal: Introducing half-precision (fp16) 2x fp32.
Half precision widely used in video-games and deep 

learning applications, so expect good scalability in future 
GPU generations.
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II. Transistors and memory improvements



Benefits

When you shrink the 
transistor gate, you get:

Faster switching: 
Higher frequency.

Smaller units:
More transistors per chip.
Bigger designs.

Lower power:
Less heat.
Wider autonomy.
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When you adopt 
Stacked-DRAM, you get:

Faster response: 
Higher frequency and bandwidth.

High density packaging:
More bytes per chip.
Bigger sizes.

Low power:
Less heat.
Wider autonomy.

More GFLOPS/W More bandwidth



GPU peak performance vs. CPU

GPU 6x faster on “double”:
 GPU: 3000 GFLOPS
 CPU: 500 GFLOPS
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  Peak GFLOPS (fp64) Peak Memory Bandwidth

GPU 6x more bandwidth:
 7 GHz x 48 bytes = 336 GB/s.
 2 GHz x 32 bytes = 64 GB/s.



II.1. New manufacturing processes



Manufacturing process for a fabless company

A loyal partner for more than 15 years has been TSMC.
After many speculations, NVIDIA announced in Nov’14 to 

use TSMC’s next-generation 16nm FinFET process.
They skip the 20nm node. Intel & Samsung now in 14nm.
Roadmap (already announced by TSMC):

Past: [4Q’11] They introduced 28nm.
Present: 16nm FinFET.

[4Q’15] Volume production.
[1Q’16] Commercial chips. Pascal will arrive shortly after this starting point.

Future: 10nm 3D FinFET.
[4Q’16] Available to customers.
[1Q’17] Volume production.

Beyond: [4Q’17] 7nm 3D FinFET. 13



Benefits of moving from the last 28nm node
to the first 16nm node

40% more performance at the same power draw.
50% less power at the same speed.
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Source: Cadence (TSMC’s partner)



II.2. New memories



Today
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GPU CPU

DDR4 MemoryGDDR5 Memory

PCIe
16 GB/s

DDR4
50-75 GB/s 

GDDR5
250-350 GB/s



A 2014/15 graphics card:
Kepler/Maxwell GPU with GDDR5 memory
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In 2016
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GPU CPU

DDR42.5D memory

NVLINK
80 GB/s

DDR4
100 GB/s 

Memory stacked 
in 4 layers: 1 TB/s



A 2016 graphics card:
Pascal GPU with Stacked DRAM
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A Pascal GPU prototype
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The Pascal GPU prototype:
SXM 2.0 Form Factor
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140 mm.

78 mm.

(* Marketing Code Name. Name is not final).

SMX 2.0 *: 
3x Performance Density



Pascal Stacked DRAM Memory

3D chip-on-wafer integration.
3x bandwidth vs. GDDR5.
2.7x capacity vs. GDDR5.
4x energy efficient per bit.
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How to break the 1 TB/s bandwidth barrier
with a 2x 500 MHz clock

BW = frequency*width => 1 TB/s = 2x500MHz * width =>
width = 8000 Gbits/s / 1 GHz = 8000 bits
Width in Titan X: 384 bits.     Max. in GPU history: 512 bits.
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passive silicon interposer 

Package Substrate 

Pascal 
(GP100) HBM 

HBM 
HBM 
HBM 

HBM 
HBM 
HBM 
HBM 

The GPU
Layer

Cube
TSVs: Through-silicon vias

Bumps

Heatsink

(same height
for memory
and GPU)

There is an interconnection hierarchy!



Unified memory: Encourage the programmer 
NOW to see the FUTURE memory
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GPUCPU

DDR3 GDDR5

Main memory Video memory

PCI-express

Maxwell
  GPUCPU

DDR3 GDDR5Unified 
memory

The old hardware 
and software model:
Different memories, 
performances
and address spaces.

The new API:
Same memory, 
a single global 
address space.

Performance is sensitive 
to data proximity.

CUDA 2007-2014 CUDA 2015 on



CUDA memory types
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Zero-Copy
(pinned memory)

Unified Virtual 
Addressing Unified Memory

CUDA call

Allocation fixed in

Local access for

PCI-e access for

Other features

Coherency

Full support in

cudaMallocHost(&A, 4); cudaMalloc(&A, 4); cudaMallocManaged(&A, 4);

Main memory (DDR3) Video memory (GDDR5) Both

CPU Home GPU CPU and home GPU

All GPUs Other GPUs Other GPUs

Avoid swapping to disk No CPU access On access CPU/GPU migration

At all times Between GPUs Only at launch & sync.

CUDA 2.2 CUDA 1.0 CUDA 6.0



Example 1: Sorting elements from a file.
The programming style converges with C
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CPU code in C GPU code in CUDA (v. 6.0 on)

void sortfile (FILE *fp, int N) 
{
  char *data;
  data = (char *) malloc(N);
  
  fread(data, 1, N, fp);

  qsort(data, N, 1, compare);

  use_data(data);

  free(data);
}

void sortfile (FILE *fp, int N) 
{
  char *data;
  cudaMallocManaged(&data, N);
  
  fread(data, 1, N, fp);

  qsort<<<...>>>(data, N, 1, compare);
  cudaDeviceSynchronize();
  use_data(data);

  cudaFree(data);
}



Example 2: Linked lists

Almost impossible to manage in the original CUDA API.
The best you can do is use pinned memory:

Pointers are global: Just as unified memory pointers.
Performance is low: GPU suffers from PCI-e bandwidth.
GPU latency is very high, which is critical for linked lists because of 

the intrinsic pointer chasing. 27

key

value

next

key

value

next

key

value

next

key

value

next

key
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next

key
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next

All accesses via       PCI-express bus

CPU memory

GPU memory



Linked lists with unified memory

Can pass list elements between CPU & GPU.
No need to move data back and forth between CPU and GPU.

Can insert and delete elements from CPU or GPU.
But program must still ensure no race conditions (data is coherent 

between CPU & GPU at kernel launch only). 28
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next

key
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next
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value

next

CPU memory

GPU memory



Unified memory: Summary

Drop-in replacement for cudaMalloc() using 
cudaMallocManaged().

cudaMemcpy() now optional.

Greatly simplifies code porting.
Less Host-side memory management.

Enables shared data structures between CPU & GPU
Single pointer to data = no change to data structures.

Powerful for high-level languages like C++.
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Unified memory: The roadmap.
Contributions on every abstraction level

30

Abstraction 
level

Past:
Consolidated

 in 2014

Present: 
On the way 
during 2015

Future: 
Available

in coming years

High

Medium

Low

Single pointer to data. 
No cudaMemcpy() 

is required

Prefetching mechanisms 
to anticipate data arrival 

in copies
System allocator unified

Coherence @
launch & synchronize Migration hints Stack memory unified

Shared C/C++ data 
structures

Additional
OS support

Hardware-accelerated 
coherence



III. Stacked DRAM (3D RAM)



Stacked DRAM: A tale of two consortiums

HMCC (Hybrid Memory Cube Consortium).
Mentors: Micron and Samsung.
http://www.hybridmemorycube.org (HMC 1.0, 1.1, 2.0 already 

available)

HBM (High Bandwidth Memory).
Mentors: AMD and SK Hynix.
https://www.jedec.org/standards-documents/docs/jesd235 (access 

via JEDEC).

Keep an eye on what the gurus predict at the end of this 
year (incoming report by the ITRS):

http://www.itrs.net
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III.1 HMC
(Hybrid Memory Cube)



Hybrid Memory Cube Consortium (HMCC)
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HMCC achievements and milestones Date

First papers published about Stacked DRAM
(based on research projects)

First commercial announcement of the technology, 
by Tezzaron Semiconductors

HMC Consortium is launched by Micron Technologies 
and Samsung Electronics

Specification HMC 1.0 available

Production samples based on the standard

2.5 configuration available

Specification HMC 2.0 available

2003-2006

January, 2005

October, 2011

April, 2013

Second half of 2014

End of 2014

2015



Developer members of HMCC 
(at the time HMC 1.0 was available)

35

Founders of 
the consortium



Hybrid Memory Cube at a glance
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►Evolutionary DRAM roadmaps hit limitations of bandwidth and power efficiency.
►Micron introduces a new class of memory: Hybrid Memory Cube.
►Unique combination of DRAMs on Logic.

► Micron-designed logic controller.
► High speed link to CPU.
► Massively parallel “Through Silicon Via” 

connection to DRAM.

Revolutionary Approach to Break Through the “Memory Wall” 

Key Features Unparalleled performance

► Up to 15x the bandwidth of a DDR3 
module [but just 2x vs. GDDR5].

► 70% less energy usage per bit than 
existing technologies [measured in 
number of active signals involved, 
power savings are 50% only].

► Occupying nearly 90% less space 
than today’s RDIMMs [95% savings].

Targeting high performance computing 
and networking, eventually migrating 

into computing and consumer



Details on silicon integration

DRAM cells are organized in vaults, 
which take borrowed the interleaved 
memory arrays from already existing 
DRAM chips.

A logic controller is placed at the base 
of the DRAM layers, with data matrices 
on top.

The assembly is connected with 
through-silicon vias, TSVs, which 
traverse vertically the stack using pitches 
between 4 and 50 microns with a vertical 
latency of 12 picoseconds for a Stacked 
DRAM endowed with 20 layers. 37
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3D integration,
side by side with the processor

3D technology 
for processor(s)

SRAM0
SRAM1
SRAM2
SRAM3
SRAM4
SRAM5
SRAM6
SRAM7

CPU+GPU

Links to processor(s), 
which can be another 3D 
chip, but more 
heterogeneous:  
- Base: CPU and GPU. 
- Layers: Cache (SRAM).

Step 5: Buses connecting 3D memory chips
and the processor are incorporated.

Step 3: Pile-up 
DRAM layers.

Step 2: Gather the 
common logic underneath.
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Step 1: Partition into 16 cell 
matrices (future vaults)

Step 4: Build vaults with TSVs

3D technology 
for DRAM memory

DRAM0
DRAM1
DRAM2
DRAM3
DRAM4
DRAM5
DRAM6
DRAM7

Control 
logic

A typical multi-core die 
uses >50% for SRAM. 
And those transistors 
switch slower on lower 
voltage, so the cache 
will rely on interleaving 
over piled-up matrices,     
just the way DRAM does.

Typical DRAM
chips use 74%
of the silicon
area for the
cell matrices.



What it takes to each technology 
to reach 640 GB/s.

39

Circuitry required DDR3L-1600 DDR4-3200 Stacked DRAM HMC 1.0

Data bandwidth (GB/s.)

Items required to reach 640 GB/s.

12.8 per module 25.6 per module 20 per link of 16 bits

50 modules 25 modules 32 links (8 3D chips)

Energy consumed DDR3L-1600 DDR4-3200 Stacked DRAM HMC 1.0

Watts (W.)

Power consumed for 640 GB/s.

6.2 per module 8.4 per module 5 per link

310 W. 210 W. 160 W. (50% savings)

Physical space on motherboard DDR3L-1600 DDR4-3200 Stacked DRAM HMC 1.0

Module area (width x height)

Total area occupied for 640 GB/s.

165 mm. x 10 mm. = 1650 mm2165 mm. x 10 mm. = 1650 mm2 1089 mm2 per chip

825 cm2 412.5 cm2 43.5 cm2 (95% savings)

Active signals DDR3L-1600 DDR4-3200 Stacked DRAM HMC 1.0

Active pinout required

Total number of electrical lines

143 per module 148 per module 270 per chip

7150 3700 2160 (70% savings)



III.2. HBM
(High Bandwidth Memory)



Why GDDR5 is not enough

Performance: Scaling has slowed down dramatically and 
grown exponentially more expensive in the last few years.

Power:
Already in the non-efficient region of power/performance chart.
It requires much more energy to increase the BW that it used to.

Space:
4 chips of 256 MB occupy 672 mm2. 
Using HBM, 1 GB occupies only 35 mm2 (5%).

Silicon interposer is required to benefit from wire density. 41

Case study Video 
memory Bandwidth Bandwidth 

per watt
Total power 
consumed

AMD Radeon R9 290X

AMD Fiji

GDDR5 320 GB/s 10 GB/s 32 W.

HBM 512 GB/s 35 GB/s 15 W.



The bandwidth battle:
HBM vs. DDR3 and GDDR5
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DDR3 GDDR5 HBM1 HBM2

Pins for data

Prefetching (per pin)

Access granularity 
(product of the     
last two rows)

Bandwidth
(per chip or layer)

Chips or layers

Cubes per GPU

Total GPU bandwidth

8 per chip 32 per chip 2 x 128 per layer 2 x 128 per layer

8 8 2 2

8 bytes        
per chip

32 bytes          
per chip

64 bytes              
per layer

64 bytes             
per layer

2 GB/s
(2 Gbps/pin)

28 GB/s
(7 Gbps/pin)

32 GB/s
(1 Gbps/pin)

64 GB/s
(2 Gbps/pin)

8 chips/module 12 chips/card 4 layers/cube 4 or 8 layers/cube

- - 4 4

Typical CPU: 
2 GB/s. 

* 8 chips 
* 4 channels
= 64 GB/s

Maxwell Titan X:      
28 GB/s 

* 12 chips 
= 336 GB/s

(the end)

AMD’s Fiji:
32 GB/s 

* 4 layers                
* 4 cubes = 
512 GB/s 

(the beginning)

64 GB/s 
* 4 or 8 layers        
* 4 cubes = 

1 or 2 TB/s



Pending challenges

Competitive cost (hopefully solved on massive sellings).
Power density: One watt for every 35 GB/s is too much 

when your goal is to exceed the TB/s barrier.
Capacity (hopefully solved when 16nm, 10nm and 7nm 

manufacturing processes contribute).
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HBM1 HBM2

Capacity per layer

Layers per cube

Capacity per cube

Cubes per GPU

Total capacity

2 Gbits 8 Gbits

4 4-8

1 GB 4-8 GB

4 4

4 GB 16-32 GB



IV. Impact on GPUs 
and concluding remarks



The Roofline model: Hardware vs. Software
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The Roofline model: Software evolution.
Case study: FMM (Fast Multipole Method)
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Despite all these optimizations, more than 70% 
of scientific codes remain memory-bound 

Kepler K20c (fp32)

Maxwell Titan X (fp64)

Maxwell Titan X (fp32)



Concluding remarks

We are facing the heterogeneous era in chips, with better 
integration of computing and capacity plus an emphasis on 
buses:

TSVs for communicating memory cells faster.
Silicon interposers for higher data volume and better scalability.

GPU programmers can benefit from this technology by 
adopting unified memory and providing hints to compilers 
about the way they actually use data.

HMC and HBM emerge to break the memory wall and 
promote more hierarchy on interconnections and less 
hierarchy on memory types.
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