

Breaking the Power Wall in Exascale Computing

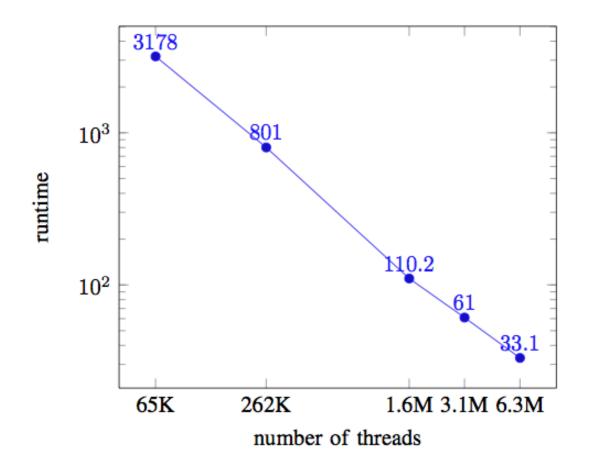
Dr. Costas Bekas

IBM Research - Zurich.

© 2015 IBM Corporation

IBM

Implementing Exact-Exchange in CPMD >99% Parallel Efficiency to over 6.2M threads Studying Li-Air Batteries, 1736 atoms, 70Ry cuttof



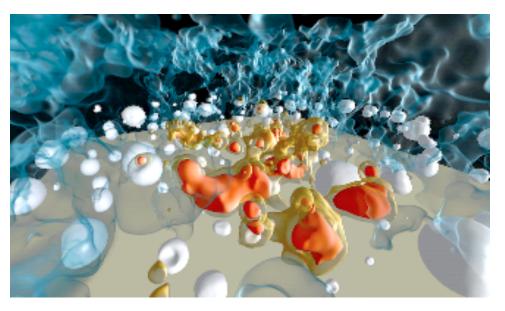
V. Weber, T. Laino, C. Bekas, A. Curioni, A. Bertsch, S. Futral IPDPS 13

Success in Petascale computing: BG/Q Results

Cloud cavitation collapse

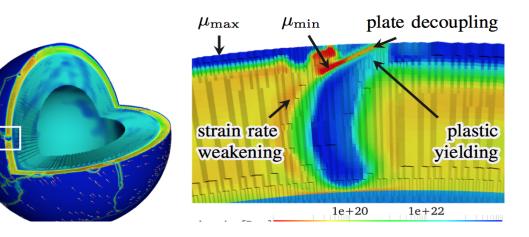
ACM Gordon Bell Prize 2013 14.4 PFLOP/S @73% of peak perf.

13 Trillion elements6.4 M threads

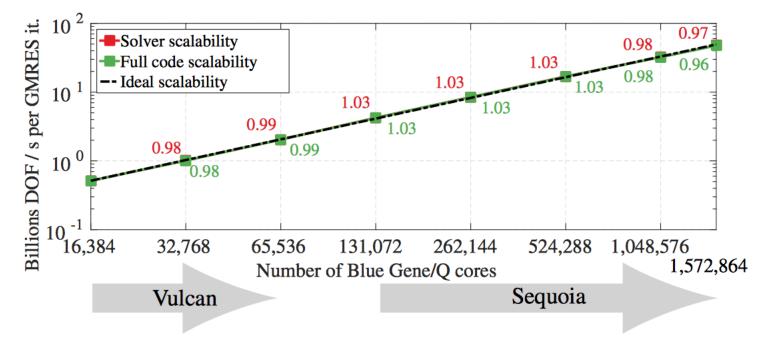


Success in Petascale computing: BG/Q Results

Mantle Simulations



ACM Gordon Bell finalist 2015 97% of sustained scalability for a fully implicit solver. 1.6M cores 3.2M MPI processes



5

This talk is about Reaching Exascale and Beyond:

The Energy/Power Barrier and How Algorithmic Re-engineering Can Open the Way

IBM

Exascale Targets: Difficulties Along all Axes

Sustained Performance / \$
50x improvement needed

~5x more area of silicon Expected. 50x more compute pipelines

6

3-4 technology generations expected

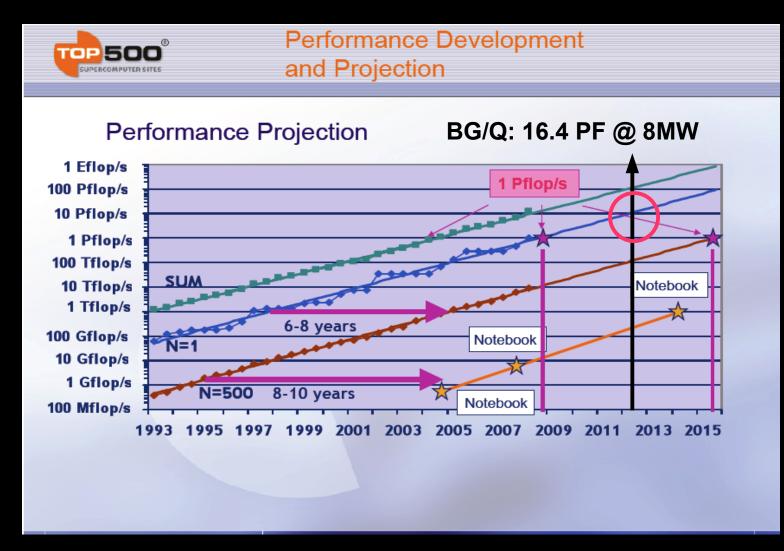
Linear dimensions: 3x-4x improvements expected

Ease of Use / Reliability Broad scientific impact 50x improvement needed Sustained Performance/Watt 20x improvement needed

*Improvements relative to 2011/2012 BG/Q 20 PF/s systems

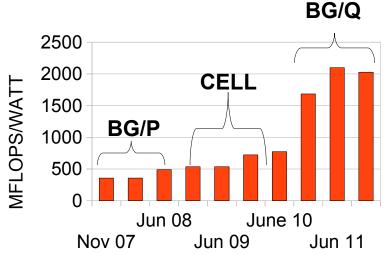
© 2015 IBM Corporation

Measuring performance in HPC: The traditional way ... MFLOP/SEC ... has brought us this far!



Achieving Exascale: The Energy/Power Wall

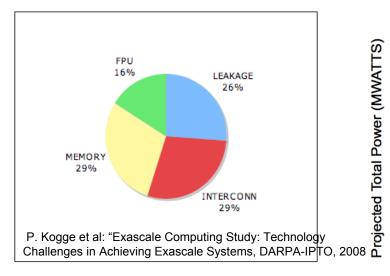
TOP SYSTEM AT GREEN500 LIST Green HPC



Focus moves from MFLOPS to MFLOPS/WATT

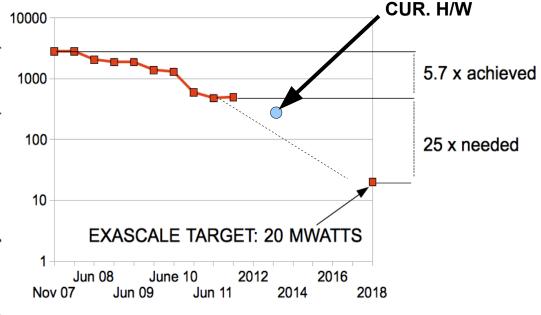
Given a power budget target maximize operations

www.green500.org: derived from www.top500.org



Exascale systems:

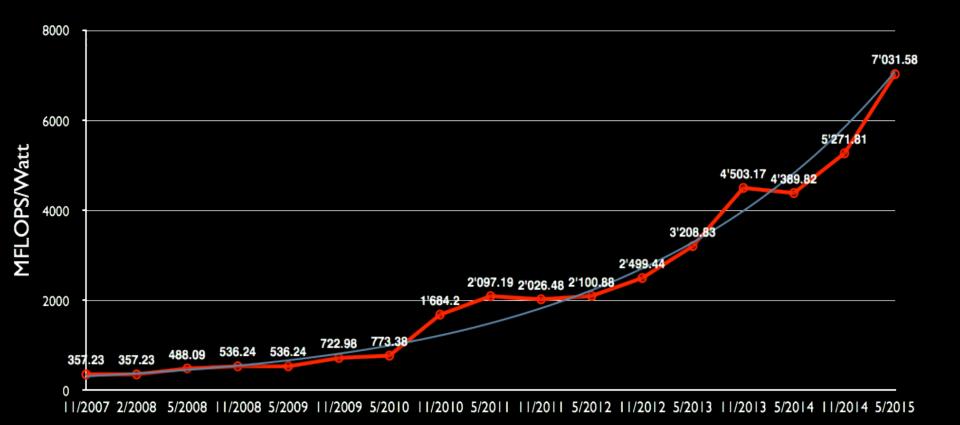
- FPU to cost a fraction of total energy (16%)
- Total data movements: ~60%



Measuring performance in HPC: A major step forward The green way... MFLOPS/Watt: www.green500.org

Green500 Rank	MFLOPS/W ~2.5x	_{Site} ∗ in 6 years wrt BG/Q	Computer* only	Total Power (kW)
1	5,271.81	GSI Helmholtz Center	L-CSC - ASUS ESC4000 FDR/G2S, Intel Xeon E5-2690v2 10C 3GHz, Infiniband FDR, AMD FirePro S9150 Level 1 measurement data available	57.15
2	4,945.63	High Energy Accelerator Research Organization /KEK	Suiren - ExaScaler 32U256SC Cluster, Intel Xeon E5-2660v2 10C 2.2GHz, Infiniband FDR, PEZY-SC	37.83
3	4,447.58	GSIC Center, Tokyo Institute of Technology	TSUBAME-KFC - LX 1U-4GPU/104Re-1G Cluster, Intel Xeon E5- 2620v2 6C 2.100GHz, Infiniband FDR, NVIDIA K20x	35.39
4	3,962.73	Cray Inc.	Storm1 - Cray CS-Storm, Intel Xeon E5-2660v2 10C 2.2GHz, Infiniband FDR, Nvidia K40m Level 3 measurement data available	44.54
5	3,631.70	Cambridge University	Wilkes - Dell T620 Cluster, Intel Xeon E5-2630v2 6C 2.600GHz, Infiniband FDR, NVIDIA K20	52.62
6	3,543.32	Financial Institution	iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband, NVIDIA K20x	54.60
7	3,517.84	Center for Computational Sciences, University of Tsukuba	HA-PACS TCA - Cray CS300 Cluster, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband QDR, NVIDIA K20x	78.77
8	3,459.46	SURFsara	Cartesius Accelerator Island - Bullx B515 cluster, Intel Xeon E5-2450v2 8C 2.5GHz, InfiniBand 4× FDR, Nvidia K40m	44.40
9	3,185.91	Swiss National Supercomputing Centre (CSCS)	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect , NVIDIA K20x Level 3 measurement data available	1,753.66
10	3,131.06	ROMEO HPC Center - Champagne-Ardenne	romeo - Bull R421-E3 Cluster, Intel Xeon E5-2650v2 8C 2.600GHz, Infiniband FDR, NVIDIA K20x	81.41

We start to see an exponential behavior in the Green500. But is this really affecting the top line? 5 years ago: 2.1 GF/W, now 1.9 GF/W



Measuring performance in HPC the Green way

- Main idea: run LINPACK on power optimized hardware...
- Hardware is power optimized for LINPACK specific tasks
 - FLOP intensive calculations
 - Heavy memory hierarchy utilization
 - Heavy interconnect utilization
- Thus: if all goes well...We can do more flops for each available watt
- But: Is this what Green computing is about?
- Real target: <u>Total Energy Spent</u>
- Can the FLOPS/WATT metric give a good indication?

FTTSE (Bekas-Curioni, EnaHPC, Hamburg, Sept, 2010)

Energy aware performance metric

FTTSE = f(tts) x Energy

- tts: time to solution
- f(tts) a function of time to solution

FTTSE v.s. F/W

- F/W still promotes power hungry algorithms:
 - Why: Flops and Watts are optimized separately
 - Thus: Once a satisfactory power budget is achieved then users tend to maximize sustained flops
 - High sustained flops comes from algorithms that make full use of the hardware

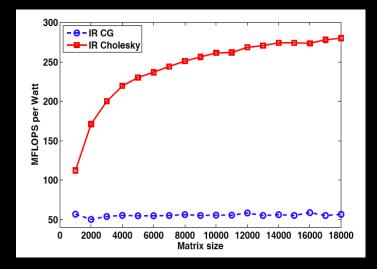
FTTSE v.s. F/W

- F/W is a "natural" green extension of the original F/S metric
 - Fix a certain benchmark (LINPACK: solution of dense linear systems) and then compare machines flops per watt wrt. this benchmark.
- Moving to FFTSE demands for simultaneous minimization of power consumption and time to solution:
 - Architectures cannot any longer be measured against a single benchmark! LINPACK is not enough.
 - Instead: Collection of benchmarks (i.e. 7-13 Colella's Dwarfs)
 - Example: Optimize architecture for sparse computations, FFT's (heterogeneous chips?)

Examples of Algorithmic Rethinking

Solving a Dense Symmetric Positive Definite Linear System

Typically this is a "no-brainer" Use Cholesky: BLAS3..thus optimal... But is it?



SOLVING DENSE SPD LINEAR SYSTEMS

Cholesky Decomposition:

If A is SPD: $A=R^{T}R$

R is upper triangular. Then solving Ax=b becomes

 $x=A^{-1}b = (R^{T}R)^{-1}b = R^{-T}R^{-1}b$

Inverting (solving: back substitution) triangular matrices is cheap! O(n²)

But the Cholesky decomposition costs O(n³)

Observe: n=1M, already requires Exaflop like resources.

Can we do better? Can we accelerate?

DIVE IN THE PAST: ITERATIVE REFINEMENT

Consider the linear system: Ax = b and assume we have an initial "guess" x_0

- Compute the residual: $r = b Ax_0$
- Solve for the residual: Ad = r
- Update the solution: $x_1 = x_0 + d$

Repeat steps 1-3 if remainder is not small enough: ||r||₂ I tol

What if steps 1-3 could be done in infinite precision (no rounding errors):

- 1. $d = A^{-1}r = A^{-1}(b Ax_0)$
- 2. $d = x (A^{-1}A)x_0 = x x_0$
- 3. $x_1 = x_0 + x x_0 = x$

Thus, we would have a completely accurate result in 1 step! **But, round-off is inevitable.** So, why does IR work?

Computing r and d accurately "enough" is adequate to bring improvement to x₁

MIXED PRECISION ITERATIVE REFINEMT WHAT IF WE HAD FAST/LOW POWER/ HARDWARE AVAILABLE?

Consider two modes of machine precision:

- LOW PRECISION: LP
- ✓ HIGH PRECISION: HP
 - 1. Compute the Cholesky factorization: A=R^TR. Cost: O(1/3n³)
 - 2. Compute initial solution: $R^{T}(R x_{0}) = b$. Cost: $O(n^{2})$
 - 3. Compute initial residual: $r_0 = b Ax_0$. Cost: O(n²)
 - 4. k = 0
 - 5. REPEAT
 - 1. Solve for residual: $\mathbf{R}^{\mathrm{T}}(\mathbf{R} \mathbf{d}_{\mathrm{k}}) = \mathbf{r}_{\mathrm{k}}$ Cost: $\mathbf{O}(\mathbf{n}^{2})$
 - 2. Update solution: $x_{k+1} = x_k + d_k$ Cost: O(n)
 - 3. Compute residual: $r_{k+1} = b Ax_{k+1}$
- $a_{k+1} = b Ax_{k+1}$ Cost: O(n²)

- 4. k = k + 1
- UNTIL ||**r**_{k+1}|| [] tol

Key properties:

- 1. Overall cost O(1/3n³). But performed in LOW PRECISION. Cost in HP is O(n²)
- 2. We can take great advantage of fast single precision hardware!

ACCELARATION

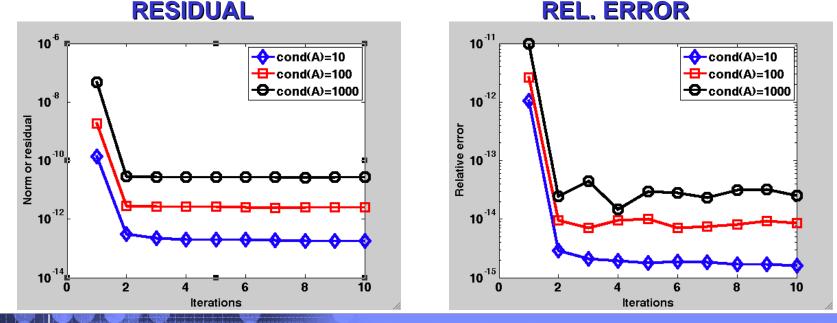
Mixed Precision IR: Does it converge?

<u>Theory</u>

Mixed Precision IR converges so long as the solver we use for a system Ay = c satisfies for the computed solution y':

 $(A + \textcircled{E}) y' = c, ||A^{-1} E||_1 < 1$

Indeed we can approximate a result in nearly full High Precision:



© 2015 IBM Corporation

Mixed Precision IR: Fast Low Precision

Consider two modes of machine precision:

- LOW PRECISION: LP
- ✓ HIGH PRECISION: HP
 - 1. Compute the Cholesky factorization: $A=R^{T}R$. Cost: O(1/3n³)
 - •
 - •
 - •

We can take great advantage of very fast low precision hardware!

- ✓ Dominant cost O(1/3n³) is all in low precision
- ✓ Thus we can accelerate computations...
- ✓ We benefit from reduced memory traffic (compare 4 bytes of IEEE single to 8 bytes for IEEE) double

So...what is the catch?

- Cost remains cubic! Intractable to solve large systems (very large n). How about parallel?
- Cholesky is well known to present difficulties in parallel scaling

WHY DOES IR: WORK?

<u>Theory</u>

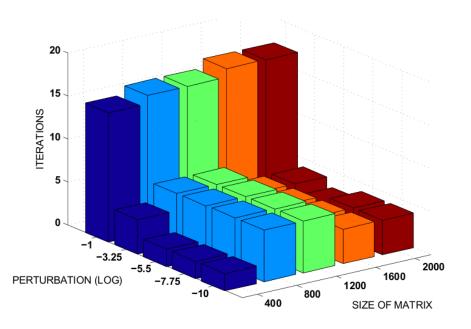
Mixed Precision IR converges so long as the solver we use for a system Ay = c satisfies for the computed solution y':

 $(A + \textcircled{E}) y' = c, ||A^{-1} \textcircled{E}||_1 < 1$

Can we relax solver accuracy?

Can we use "dirty/noisy" solvers?

Answer: YES



Using iterative solvers instead of Cholesky

- ✓ The cubic complexity of standard Iterative Refinement stems from the Cholesky decomposition
- ✓ We saw that we could utilize a significantly less accurate solver

We propose:

- Substitute the dense solver (Cholesky based) with an iterative one
- For SPD linear systems this will be the Conjugate Gradient solver
- ✓ Perform only a small (constant) number of CG steps, k<<n</p>
- Total cost reduces from O(n³) ! O(kn²), for a small k

IBM Research

CG Based Iterative Refinement

- LOW PRECISION: LP
- HIGH PRECISION: HP

 Let CG(A,y,k) be a procedure implementing k steps of CG in single precision

- Compute initial solution: x₀=CG(A,b,k) Cost: O(kn²)
- Compute initial residual: $r_0 = b Ax_0$

Cost: O(n²)

Cost: O(n²)

- $\mathbf{k} = \mathbf{0}$
- REPEAT
 - Solve for residual: $d_k = CG(A,r_k,k)$ Cost: $O(kn^2)$
 - Update solution: $x_{k+1} = x_k + d_k$ Cost: O(n)
 - **Compute residual:** $r_{k+1} = b Ax_{k+1}$
 - $\mathbf{k} = \mathbf{k} + 1$
- •UNTIL $\|\mathbf{r}_{k+1}\|$ [] tol
- Key properties:

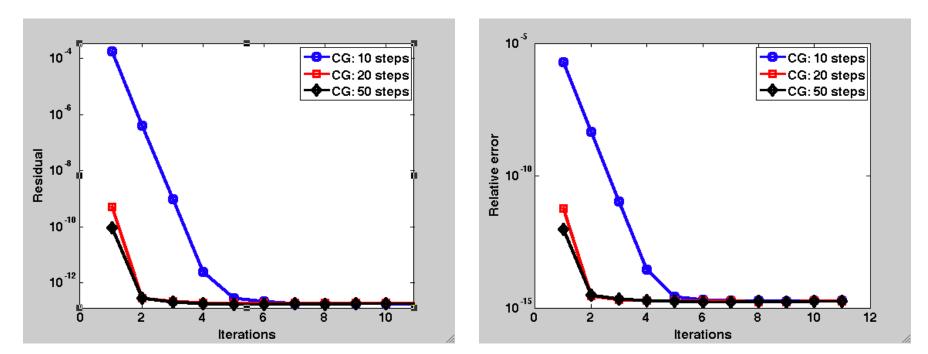
Dominant cost O(kn²). Performed in LOW PRECISION. Cost in HP is O(n²) We can take great advantage of fast single precision hardware!

CG IR: Does it work?

Dense matrix A (n=1000)

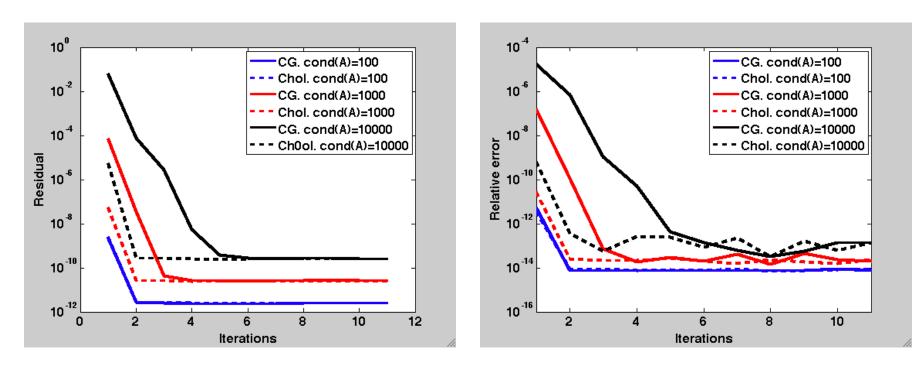
Residual

Relative error



Cholesky IR v.s. CG IR: Accuracy

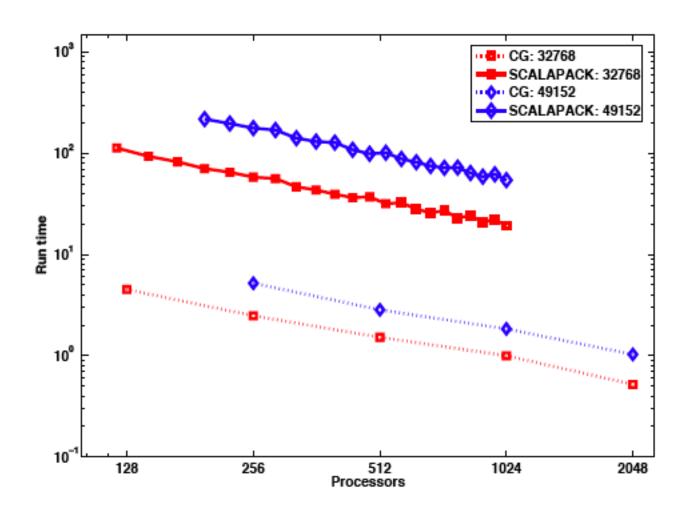
Matrix size n=1000. Varying condition numbers, cond(A)=100, 1000, 10000 CG steps: 100



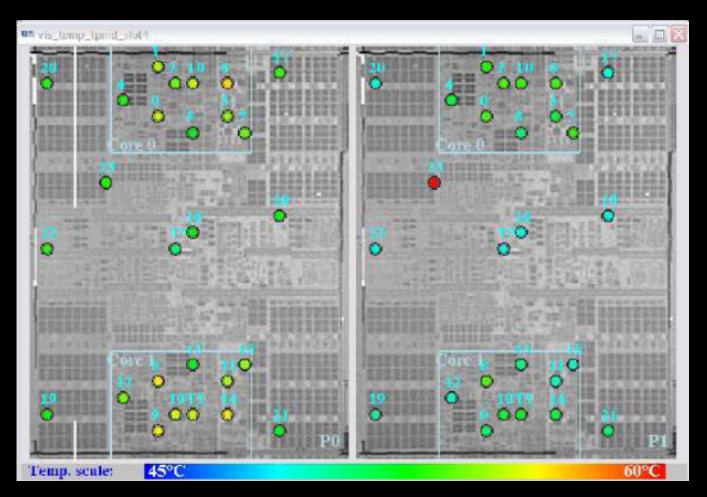
RESIDUAL

REL. ERROR

Cholesky IR v.s. CG IR: Scaleout

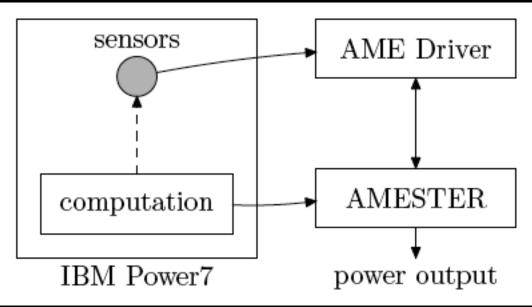


Actual On Chip Measurements

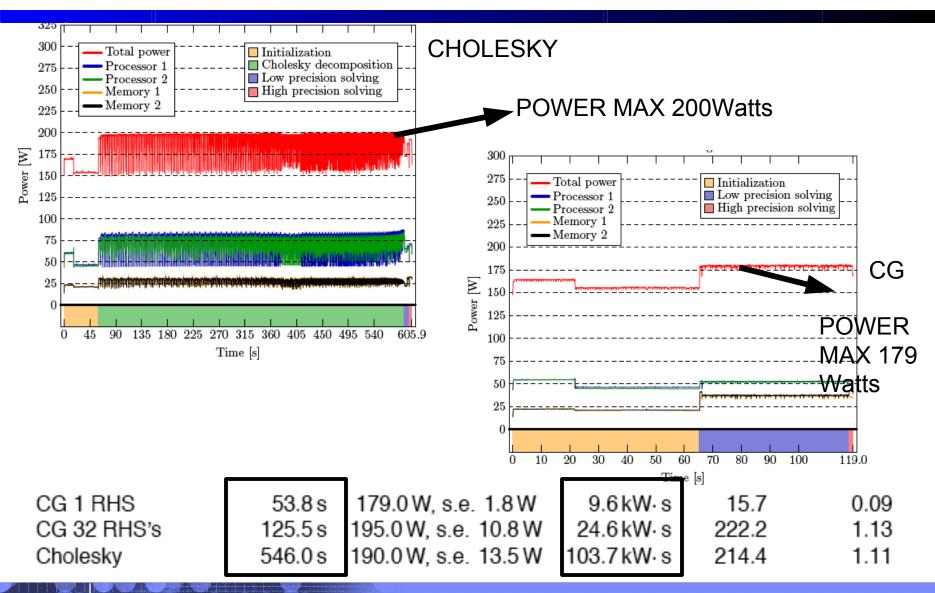


Power 7 chip has thermal sensors. Their readings can be calibrated to instantaneous power consumption with quite small error (<5%) (C. Lefurgy et al, Hot Chips 2010)

- AME driver that collects sensor data and calculates power consumption
- An external tool, AMESTER, connects to the service processor of the Power7 based server and gathers the readings. *Resolution of 75ms* routinely achieved, potential for 1ms resolution is there. Power resolution 0.1Watts
- No load on the system CPU / no measurement noise
- User application can also communicate with AMESTER: Put tags at run time

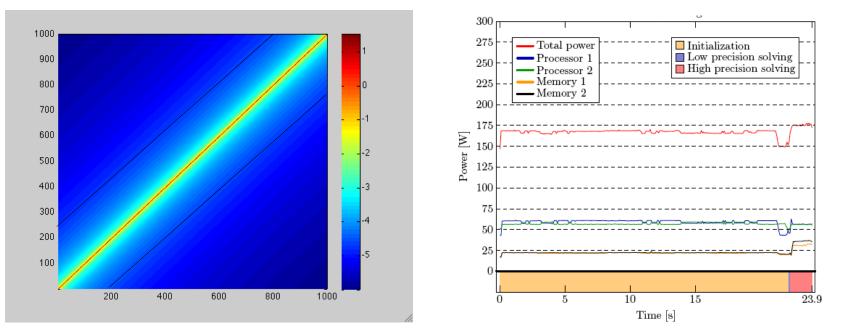


Power Consumption? Power7 system. H/W Power sensors



Can we push for more?

Data Analytics. Working with Covariance matrices. Typically they exhibit a decaying behavior away from the main diagonal. What if we make it banded? Converges!



Method	Time	Average power	Energy	GFlops	GFlops/W
banded CG 1 RHS	1.8 s	174.1 W, s.e. 4.9 W	0.3 kW√s	5.5	0.03
banded CG 32 RHS's	8.4 s	172.6W, s.e. 14.2W	1.5 kW-s	37.8	0.22
CG 1 RHS	53.8 s	179.0 W, s.e. 1.8 W	9.6 kW√s	15.7	0.09
CG 32 RHS's	125.5 s	195.0 W, s.e. 10.8 W	24.6 kW∙s	222.2	1.13
Cholesky	546.0 s	190.0 W, s.e. 13.5 W	103.7 kW∙s	214.4	1.11

IN GENERAL: CONSIDER

LOW PRECISION, LOW COST, LOW POWER: LP **HIGH PRECISION, HIGH POWER: HP** \checkmark \checkmark Let SLV(A,y,) be a LP procedure approximating Ax=b SLV: Analog? Neuromorphic (spikes?), Neural Nets?, Machine Learning?

- Compute initial solution: $x_0 = SLV(A,b)$
- **Compute initial residual:** $r_0 = b Ax_0$ ۲
- $\mathbf{k} = \mathbf{0}$ •
- REPEAT
 - Solve for residual: $d_k = SLV(A,r_k)$

Update solution: $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{d}_k$

Compute residual: $r_{k+1} = b - Ax_{k+1}$

$$\mathbf{k} = \mathbf{k} + 1$$

Cost: really low time/power Cost: n

Cost: really low time/power

Cost: n²

Cost: n²

UNTIL ||r_{k+1}|| [] tol 1.

Key properties:

Overall cost: O(n²), instead of O(n³) Most of arithmetic is performed on Low Power platform

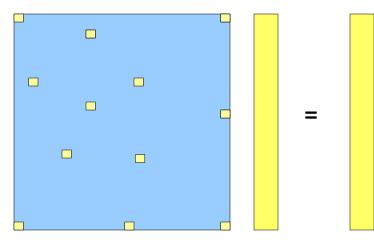
 \checkmark

Some thoughts on possible low power solutions:

- Learning approaches
 - Machine Learning / Statistical approach
 - Neural Networks
- Neuromorphic approaches
 - Spike computing to simulate numerics
- Hardware approaches
 - Accelerators (GPUs)
 - FPGAs
 - SPDs
 - Low reliability hardware (low voltage)

Examples...

Learning / stochastic approach: Reduce dimension by random sampling XDATA DARPA PROJECT (2012-2016)



How will we decide which sampling?

- Estimate prion probabilities?
- Compare with "similar" cases?
- "Sparsify" full graph? Dynamicaly
- Changing network?
- Learn starting vector?

See recent work by Drineas, Mahoney, Claskson, Boutsidis and others)

Analog emulation or "inexact"

Digital computation: Threshold computing? (inexact bolean algebra) - Specially designed FPGAs

Spike computing numerical linear algebra: investigation

The Roadmap to Exascale poses great challenges

Power

Emphasis on power: Algorithms have a potentially very large margin of improvement. Accelerate computations by replacing power hungry digital arithmetic with green but noisy alternative computing: Low Prec. Digital / Neuromorphic/ Learning / Analog

How are we addressing the challenge: Introducing "noise" and stochasticity...allows for different kind of hybrid computing.

Algorithms: There is "plenty of room up there"