
Adapting Weather and Climate Models to
Hybrid Architecures

Carlos Osuna, C2SM (ETH)
carlos.osuna@env.ethz.ch

Andrea Arteaga, Oliver Fuhrer, Tobias Gysi, Xavier
Lapillonne, Pascal Spoerri, Thomas Schulthess

PPAM 2015



COSMO Model

COSMO is a regional atmospheric model used for:
1 numerical weather prediction at 10 national weather services
2 climate research studies at ∼50 universities

2 / 29



Motivation for porting COSMO to
Accelerators

Strict operational requirements for time to solution (time-compression
factor ∼70 for MeteoSwiss) and costs of computing systems.
However, strong interest in scientific community for increasing
computational cost:

1 High resolution (1 km horizontal resolution) weather forecast
2 Ensemble weather forecast
3 Cloud resolving climate simulations (2.2 km resolution) over the alps.

3 / 29



Scientific Challenges in COSMO

ECMFW-Model
18 / 9 km gridspacing
4x per day

COSMO-E
2.2 km gridspacing
582x390x60 gridpoints
2 x per day

COSMO-1
1.1 km gridspacing
1158 x 774 x 80
gridpoints
8 x per day

4 / 29



5 / 29



Motivation for porting COSMO to
Accelerators

Strict operational requirements for time to solution (time-compression
factor ∼70 for MeteoSwiss) and costs of computing systems.
However, strong interest in scientific community for increasing
computational cost:

1 High resolution (1 km horizontal resolution) weather forecast
2 Ensemble weather forecast
3 Cloud resolving climate simulations (2.2 km resolution) over the alps.

Larger memory bandwidth of accelerators makes GPUs attractive
computing architectures for memory bound codes:
E5-2670 (Q1/2012) -> 51.2 GB/s vs K20X (Q4/2012) -> 250 GB/s

COSMO was fully ported to GPUs (work funded by HP2C initiative: DOI:
10.14529/jsfi140103)

6 / 29



COSMO Components

7 / 29

∼ 400 k lines of code
Initialization

Physics

Dynamics

Data
Assimilation

Halo Update

Diagnostics

I/O

Cleanup

Dynamics

54%

Physics

23% Other
14%

Communication
18%



Physics

Parametrized equations
of physical processes not
resolved at grid scale.
Large codes
Relatively simple stencil
patterns in vertical
columns (tridiagonal
solves, pentadiagonal
solves,... )

Physical Parametrizations were ported to GPUs using OpenACC

8 / 29



Physics

Ported to GPU using OpenACC, retains portable Fortran code
Fully optimized version requires some restructuring (loops, data layout)

CPU Optimized
do k=2,nk
!$acc parallel
!$acc loop gang vector
do i=1,ni
some code 1 ...
c(i) = D∗exp(a(i,k−1))

end do
!$acc end parallel
!$acc parallel
!$acc loop gang vector
do i=1,ni
a(i,k)=c(i)∗a(i,k)
some code 2 ...

end do
!$acc end parallel
end do

GPU Optimized
!$acc parallel
!$acc loop gang vector
do k=2,nk

do i=1,ni
some code 1 ...
zc=D∗exp(a(I,k−1))
a(I,k)=c(i)∗a(I,k)
some code 2 ...

end do
end do
!$acc end paralle

9 / 29



Dynamical Core

Solves the Navier Stokes equations using finite difference methods on
structured grids

ρ =
dv
dt
−∇p + ρg − 2Ω× (ρv)

dρ
dt

= −ρ∇ · v

ρ
dqx

dt
= −∇ · Jx + I x

ρ
de
dt

= −ρ∇ · v −∇ · (Je + R) + ε

Explicit discretization schemes produce large stencils in the horizontal
(depending on the order)
Vertical operators implicitly solved produce tridiagonal systems

Dynamical Core was ported to GPUs using STELLA DSL library

10 / 29



Dycore Data Dependencies

11 / 29



STELLA

STELLA is a DSL for stencil codes on structured grids written in C++
(template metaprogramming).

Single source code for multiple architectures, performance portable

Separation of concerns: separates model and algorithm from hardware
specific implementation and optimizations.

12 / 29



Separation Of Concerns

User description of mathematical model

∂U
∂t

= −α∇2(∇2U)

lap(i , j) = 4u(t, i , j)− u(t, i + 1, j)− u(t, i − 1, j)−
u(t, i , j + 1)− u(t, i , j − 1)

u(t + 1, i , j) = 4lap(t, i , j)− lap(t, i + 1, j)− lap(t, i − 1, j)−
lap(t, i , j + 1)− lap(t, i , j − 1)

13 / 29



Separation Of Concerns

Generated Kernel for GPU

const int i = threadIdx.x;
const int j = threadIdx.y;
int i_h = 0;
int j_h = 0;

if(j < 2)
{
i_h = i;
j_h = (j==0 ? −1 : blockDim.y);

}
else if(j < 4 && i <= blockDim.y)
{
i_h = (j==2 ? −1 : blockDim.x);
j_h = i;

}

for(int k=0; k < kdim; ++k)
{
lap(i,j) = − 4.0 ∗ phi(i,j,k)
+ phi(i+1,j,k) + phi(i−1,j,k)
+ phi(i,j+1,k) + phi(i,j−1,k);

if(i_h != 0 || j_h != 0)
lap(i_h, j_h) =

− 4.0 ∗ phi(i_h,j_h,k)
+ phi(i_h+1,j_h,k) + phi(i_h−1,j_h,k)
+ phi(i_h,j_h+1,k) + phi(i_h,j_h−1,k);

__syncthreads();
flx(i,j,k) = lap(i+1,j,k) − lap(i,j,k);
fly(i,j,k) = lap(i,j+1,k) − lap(i,j,k);
if(i_h < 0)
flx(i_h,j_h,k) = lap(i_h+1,j_h,k) −

lap(i_h,j_h,k);
if(j_h < 0)
fly(i,j_h,k) = lap(i,j_h+1,k) −

lap(i,j_h,k);
__syncthreads();
result(i,j) = phi(i,j,k) − alpha(i,j,k)∗(
flx(i,j,k) − flx(i−1,j,k) +
fly(i,j,k) − fly(i,j−1,k));

}

14 / 29



STELLA Syntax

template<typename TEnv>
struct Divergence {
STENCIL_STAGE(TEnv)

STAGE_PARAMETER(FullDomain, phi)
STAGE_PARAMETER(FullDomain, lap)
STAGE_PARAMETER(FullDomain, flx)

static void Do(Context ctx, FullDomain) {
ctx[div::Center()] = ctx[phi::Center()] −
ctx[alpha::Center()] ∗ (ctx[flx::Center() −
ctx[flx::At(iminus1)] + ctx[fly::Center() −
ctx[fly::At(jminus1)] )

}
};

IJKRealField dataIn, dataOut;

Stencil stencil;
StencilCompiler::Build(
stencil,
pack_parameters(
Param<res, cInOut>(dataOut),
Param<phi, cIn)(dataIn)
Param<alpha, cIn)(dataAlpha)

),
define_temporaries(
StencilBuffer<lap, double>(),
StencilBuffer<flx, double>(),
StencilBuffer<fly, double>()

),
define_loops(
define_sweep<cKIncrement>(
define_stages(
StencilStage<Lap, IJRange<cIndented,−1,1,−1,1> >(),
StencilStage<Flx, IJRange<cIndented,−1,0,0,0> >(),
StencilStage<Fly, IJRange<cIndented,0,0,−1,0> >(),
StencilStage<Divergence, IJRange<cComplete,0,0,0,0> >()

)
)

)
);

15 / 29



GPU Optimizations

Dynamical Core speedup (vs fortran legacy) 1.8x (CPU) and 5.8x (GPU)

How to further exploit GPU optimization without changing application,
incorporating new STELLA syntax elements?

K parallelization
Parallel Tridiagonal Solve
Software Manage Caching

16 / 29



Strong Scaling for COSMO @GPUs

GPUs show poor scalability beyond 64x64 grid points per domain, due
to lack of parallelism

100 101 102 103100

101

102

103

# Nodes

Ti
m

e 
[s

]

 

 
STELLA (E5−2670)
STELLA (K20X)
Fortran (E5−2670)
512x512
256x256

Strong scaling curves for the dynamical core of COSMO: "STELLA: A domain-specific tool for
structured grid methods in weather and climate models", Proceedings of SuperComputing 2015

17 / 29



Improving Strong Scaling

STELLA adds a syntax element that integrates new parallelization
modes for the GPU backend:

1 a k-parallel mode which parallelizes over the
vertical dimension, for stencils with only data
dependencies in the horizontal

1 a parallel tridiagonal solver for tridiagonal
systems that results from vertically-implicit
discretizations.

18 / 29



K Parallelization

A STELLA keyword triggers a k parallelization mode, that increases
the level of parallelism for GPUs

define_loops(
define_sweep<cKParallel>(
define_stages(
StencilStage<Lap, IJRange<cIndented,−1,1,−1,1> >()

)
)

)

19 / 29



Parallel Tridiagonal Solve

Vertical implicitly solved operators in the dynamical core generates
tridiagonal systems which are solved using sequential Thomas
algorithm

Forward Sweep ck =
ck

bk−ck−1ak
dk =

dk−dk−1ak
bk−ck−1ak

k = 1, ..., n

Backward Sweep xn = dn xk = dk − ckxk+1 k = n − 1, ..., 1

20 / 29



Parallel Tridiagonal Solve

STELLA integrates a parallel tridiagonal solve that improves the
performance at strong scaling compared to sequential algorithms
HPCR solver provided by Jeremy Appleyard (NVIDIA), Mike Giles:
"GPU implementation of finite difference solvers"

template<typename TEnv>
struct SetupStage
{
STENCIL_STAGE(TEnv)

static void Do(Context ctx, FullDomain) {
ctx[ hpcr_acol ::Center()] = ...
ctx[ hpcr_bcol ::Center()] = ...
ctx[ hpcr_ccol ::Center()] = ...
ctx[ hpcr_dcol ::Center()] = ...

}
};

compute of matrix and RHS coefficients
using STELLA DSL

StencilCompiler::Build(
StencilConfiguration<Real, TridiagSolve_BlockSize>(),
pack_parameters( Param<result, cInOut>(res) ),
define_loops(
define_sweep<cTridiagonalSolve>(
define_stages(
StencilStage<SetupStage>(),
StencilStage<TridiagonalSolveFBStage>(),
StencilStage<WriteOutputStage>()

)
)

)
);

Solve tridiagonal system using library
solver.

21 / 29



Parallel Tridiagonal Solve

time per system vs the size of J dimension (i size=32) for K20X

22 / 29



Software Managed Caching

Leveraging data locality is of key importance for memory bound stencil
codes.
Except texture memory cache, GPU on-chip memory resources must
be managed explicitly in the software.
STELLA provides 3 type of cache syntax. The user describes access
pattern and data reuse, still agnostic to hardware details

KCache: vertical data
dependencies. Ring buffer in a
vertical column stored in registers
(private to each thread)

KCache<acol, cFlush,
KWindow<−2,1> >()

IJCache: horizontal data
dependencies. Full block stored in
shared memory.

IJCache<lap, cLocal>()

IJKCache: data dependencies in a
3D box multiple levels stored in
shared memory

IJKCache<div, cFill,
IJKWindow<−1,1,−1,1,−2,0> >()

Provides multiple synchronization (GMEM) policies: Local, Fill, Flush, FillAndFlush
23 / 29



Software Managed Caching

Cache effect on some dynamical core operators on a K20X

Stencil cache policy no Cache (s)
IJK cache (s)

(shared mem)
AdvectionBottY fill from mem 0.15 0.14
AdvectionBottX fill from mem 0.077 0.044

FastWavesDivergence local buffer 0.088 0.069

24 / 29



Programming Models for Hybrid
Architectures

We made a performance comparison between OpenACC and STELLA
DSL for a horizontal diffusion and a vertical advection operators
STELLA is faster ∼2.0x for a naive (3 nested loops) implementation
of OpenACC
∼ 1.5x for an optimized OpenACC version (blocking, register caching,
shared memory)

25 / 29



Programming Models for Hybrid
Architectures

DSL

retain single source code, abstracts implementation & optimization
Optimal performance for multiple architectures (GPU, x86,
XeonPhi,...)
Change of paradigm has to be adopted by the community

OpenACC

retain legacy (Fortran) code
Not fully performance portable for non simple access patterns (like
vertical stencils)
Need to interoperate with other programming models for other
architectures (x86, XeonPhi)...

Combining multiple programming models (separated parts of the code) is
probably a good compromise. But requires software infrastructure to
connect data structures and programming language.

26 / 29



Conclusions

COSMO fully ported to hybrid architectures using mixed programming
models: OpenACC and STELLA DSL.
Speedup factor obtained for the full model of 1.5x (CPU) and 4.5x
(GPU) with respect to Fortran COSMO
DSL power was exploited by further backend optimizations without
modifying user code.
Combing multiple levels of abstractions show clear benefits... but also
an indication that the we still dont have a perfect programming model

27 / 29



BACKUPS

28 / 29



29 / 29


	COSMO Model

