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Mainstream approach to performance modelling

Most of algorithms for performance optimization are based on
very simple models:

I Scheduling algorithms
I Load balancing algorithms
I Data partitioning algorithms
I Task mapping algorithms

They assume the speed of processing element to be
constant.
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Matrix partitioning

Matrix partitioning problem for parallel matrix multiplication on
heterogeneous platforms*

I Input: constant processor speeds
I Matrices partitioned so that

I Area of the rectangle proportional to the speed
I Volume of communication minimized

Maths used by algorithms solving this problem do not go
beyond basic arithmetics.

* Beaumont, O. et al: Matrix Multiplication on Heterogeneous Platforms. IEEE Trans. Parallel Distrib. Syst.
2001
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Traditional Dynamic Load Balancing Algorithms

A routine has n computational units distributed across p
processors.
Processor Pi has di units such that n =

∑p
i=1 di

Initially d0
i = n/p

At each iteration
1. Execution times for this iteration measured and gathered to

root
2. if relative difference between times ≤ ε

then no balancing needed
else new distribution is calculated as:

dk+1
i = n × sk

i /
∑p

j=1 sk
j where speed sk

i = dk
i /ti(d

k
i )

3. new distributions dk+1
i broadcast to all processors and

where necessary data is redistributed accordingly.
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Domain decomposition in CFD

Parallel CFD packages such as OpenFOAM use graph/mesh
partitioning libraries for domain decomposition

I MeTiS, Scotch, etc.
I Input - vector of positive constants representing the relative

volume of computation to be performed by each processor
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The Reality: Matrix Multiplication

Functional Performance Models of GPU
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The Reality: Matrix Multiplication

Experimental results for Grid’5000 nodes
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The Reality: Matrix Multiplication

Experimental results for Netlib BLAS dgemm
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The Reality: Computational Fluid Dynamics

Speed functions of the CG solver built in different configurations
on an Adonis node (GFlops against the number of control
volumes)
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The Reality: Computational Fluid Dynamics

Experimental results for MPDATA on Intel Xeon Phi
(domain size 120 × m × 128)
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The Reality: Computational Fluid Dynamics

Experimental results for MPDATA on Intel Xeon Phi
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The Reality: Computational Fluid Dynamics

More experimental results for MPDATA on Intel Xeon Phi: the
impact of resource sharing
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The Reality: Matrix Multiplication

The impact of resource sharing: the speed of a CPU core built
in different configurations

I s1(x), s6(x), s12(x), S6(6x)/6, S12(12x)/12
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Simple dynamic load balancing may not balance
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Experimental Results

Experimental Results

Iterative Routine
Jacobi method for solving a system of linear equations.

Experimental Setup
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Experimental Results

Complex but realistic load balancing does always
balance

Face the reality and use speed functions instead of constants in
dynamic load balancing.
Challenges:

I Non-trivial partitioning algorithms manipulating by
functions, not numbers.

I Non-trivial technique to build the speed functions suitable
for the algorithms.

Benefits:
I Performance gains.
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Experimental Results

FPM-based Dynamic Load Balancing Algorithm

I Algorithm is based on models for which speed is a function
of problem size.

I Load balancing achieved when:

ti ≈ tj , 1 ≤ i , j ≤ p (1)

d1

s1(d1)
≈ d2

s2(d2)
≈ · · · ≈

dp

sp(dp)
(2)

where d1 + d2 + · · ·+ dp = n
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Experimental Results

Solving Distribution Problem

I Problem is solved geometrically by noting that the points(
di , si(di)

)
lie on a line passing through the origin when

di
si (di )

= constant .
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Experimental Results

FPM-based data partitioning algorithm

I Total problem size determines the slope

I Algorithm iteratively bisects solution space to find values di
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Experimental Results

Dynamic FPM-based data partitioning

Functional Performance Models may be
built:

I exhaustively in advance
I dynamically at run time

Initial: point (n/p, s0
i ) with speed

s0
i =

n/p
ti(n/p)

first function approximation
s′

i (x) ≡ s0
i

Iterations: point (dk
i , s

k
i ) with speed

sk
i =

dk
i

ti(dk
i )

approximation s′
i (x) updated by

adding the point
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Matrix Multiplication on Heterogeneous Platform*

I Input: constant processor speeds
I Matrices partitioned so that

I Area of the rectangle proportional to the speed
I Volume of communication minimized

I More accurate solution is based on speed functions as
input**

* Beaumont, O. et al: Matrix Multiplication on Heterogeneous Platforms. IEEE Trans. Parallel Distrib. Syst.
2001

** Clarke, D. et al: Column-Based Matrix Partitioning for Parallel Matrix Multiplication on Heterogeneous
Processors Based on Functional Performance Models. In: HeteroPar-2011, LNCS 7155, 2012
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Matrix Multiplication on Heterogeneous Platform

I Computational kernel:
panel-panel update

I Processor speed -
function of area
Built by running the
kernel for square
matrices

I FPM-based
partitioning algorithm
finds the optimal areas
The areas are used as
input to the matrix
partitioning algorithm
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Matrix multiplication on hybrid node

Experimental platform

CPU (AMD) GPUs (NVIDIA)

Architecture Opteron 8439SE GF GTX680 Tesla C870
Core Clock 2.8 GHz 1006 MHz 600 MHz
Number of Cores 4 × 6 cores 1536 cores 128 cores
Memory Size 4 × 16 GB 2048 MB 1536 MB
Memory Bandwidth 192.3 GB/s 76.8 GB/s
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Experiments on hybrid multicore multi-GPU node

Execution time of the application under different configurations

Matrix size (blks) CPUs (sec) GTX680 (sec) Hybrid-FPM (sec)

40 × 40 99.5 74.2 26.6
50 × 50 195.4 162.7 77.8
60 × 60 300.1 316.8 114.4
70 × 70 491.6 554.8 226.1

Column 1: block size is 640 × 640
Column 2: 4 × 6 CPU cores, homogeneous data partitioning
Column 3: CPU core + GPU
Column 4: 2 × 6 CPU cores + 2 × 5 CPU cores + 2 × ( CPU core + GPU ),
FPM-based data partitioning (2 × s6(x), 2 × s5(x), 2 × g(x))
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Computation time of each process
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Performance with different partitionings
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Performance optimization through load imbalancing
MPDATA can be optimized by imbalancing the load of processors*
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*Lastovetky, Shustak, Wyrzykowski,"Model-based optimization of MPDATA on Intel Xeon Phi through load
imbalancing", arxiv.org preprint, 2015
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Performance optimization through load imbalancing
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Summary

I Traditional algorithms are easy to design but not accurate.
I FPM-based algorithms are not trivial and require

mathematical skill beyond arithmetics and discrete maths.
I This is a big problem and CS curriculum does not teach

how to apply non-discrete maths in the context of CS. CS
students believe that math analysis is something that only
physicists need.

I It is not easy to go outside the box but benefits are there..
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Thank You!

Questions?
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