HPC Software Vision for Exascale Computing and Beyond

Dr. Robert W. Wisniewski Chief Software Architect Extreme Scale Computing Senior Principal Engineer, Intel Corporation

September 10, 2013

Copyright © 2013 Intel Corporation. All rights reserved.

Outline

- What is exascale
- Exascale software tension resolved
- Exascale software approaches
- Exascale software components
- Conclusion

What is exascale

What is Exascale

- Today
 - Tianhe-2 (Milkyway-2)
 - 54 Peak PF
 - 125 racks, 17.8 MW, 48K Phis, 3.1M cores
 - -K computer 10PF 800 racks, Sequoia 20 PF 100 racks
- Exascale
 - -10^18 operations per second
 - Biggest challenges: Power, Scalability, Reliability
 - Approximate straight-line projections yield:
 - 350M Watts
 - 100M computing threads
 - Each OS instance needs to stay up 50,000 years
 - Exascale software approaches need to address challenges

Extreme-Scale Software Challenge

When investigations began

- Challenges too great with current SW
- Need all new OS, compiler, language...

Others advocated

- Enhance capability of existing
- Hard, drive evolutionary approach

Revolutionary versus Evolutionary

• Which one ?

Imagine vendors telling their customers throw out everything you've done over the last 20+ years

The Real Extreme-Scale Software Challenge

 The real challenge in moving software to extreme scale, and therefore the real solution, will be figuring out how to incorporate and support existing computation paradigms in an evolutionary model while <u>simultaneously</u> supporting new revolutionary paradigms.

Moving to Extreme Scale

- Support evolutionary and revolutionary models
- Scale
- Be resilient
- Be power aware

Communication Example

Application						
	Е	MPI	OpenMP	PGAS		
	Extensible Communication and Composable Runtime Layer					
Software Hardware Interface Labels						
Hardware						

Operating System Example

OS Compute Node View

- CNOS that fully supports Linux API and ABI
- Nimble to support new technology effectively
- Move to hierarchy of OS offload for scalability
- Support fine-grained threading and asynchronous requests
- Provide support for and be amenable to running on differentiated cores

System Management

- Provide single comprehensive view of system
- Hierarchical and scalable
- Resilient

Scalable RAS Infrastructure

- Four Pillars of RAS
 - Gather: As extensive as possible, consistent format
 - Store: Database for searching and associating
 - Access: Real-time pub-sub access by all components
 - Process: Agents aggregate, trigger, notify, filter, etc.

Conclusion

- We will get to extreme scale by figuring out how to incorporate existing computation paradigms in an evolutionary model while <u>simultaneously</u> supporting new revolutionary paradigms
 - Support evolutionary and revolutionary models
 - Scale
 - Be resilient
 - Be power aware

