
1

Parallel DAG Scheduling:
Recent Results and New Directions

Rizos Sakellariou
University of Manchester

2

The Problem
• Many applications can

be represented by a
Directed Acyclic
Graph (DAG)

• Dependences between
tasks (nodes) must be
respected

• How do we allocate
tasks onto machines to
exploit parallelism and
finish as soon as
possible?

0

6

54321

87

9

3

Some background

• Parallel processing of precedence graphs
has been studied as a problem since the
1960s.

• Difficult to come up with generic solutions,
we need heuristics with good performance.

• There are many variations to the problem.
• Good overview (of work until then) in

ACM Computing Surveys (1999).
• In recent years, there has been an increased

interest.

4

A simple solution

• Divide the graph into
‘levels’.

• Schedule each level
as a ‘bag of
independent tasks’

• May not always be
possible to divide
nicely.

• What if task (2) takes
1 time unit to run,
task (6) takes 9 units
and all the rest takes
5 units?

0

6

54321

87

9

5

The key idea of a good solution
• Let’s assume we allocate tasks to machines one

after the other, respecting dependences.

• How do we choose among multiple tasks?
– E.g., after 0 finishes, any of 1,2,3,4,5 can be selected.

• The order does matter!
– follow the critical path

0

6

54321

87

9

Key: we need to minimize
the chance that machines will
remain idle. Make sure there

are tasks available.

6

Communication does matter too…

Tasks on the same
machine will need no
communication.

0

8

1

4

3

9

5

76

2

Note the role of the critical
path. If the communication
between nodes 4 and 8 takes
way too long, the length of the
schedule will keep increasing.

Time

7

Increased interest in recent years

• Lots of interest in applications which can be
represented as DAGs with tens of thousands of
nodes.

• Large-scale distributed/heterogeneous platforms
• Additional interesting dimensions to an already

difficult problem:
– Execution environment (heterogeneous, queue-based)
– The objective is not the minimization of execution

time only but (monetary) cost, energy, …

• Practical solutions are needed!
– Problems of more theoretical nature abound…

8

Scientific Workflows

Many interesting scientific applications can be represented by DAGs

I. Taylor, E. Deelman,
D. Gannon: Workflows
for e-Science. Springer,

2007

9

The Montage Workflow

• Montage example: Generating science-grade mosaics
of the sky

• http://montage.ipac.caltech.edu/

BgModel

Project

Project

Project

Diff

Diff

Fitplane

Fitplane

Background

Background

Background

Add

Image1

Image2

Image3

10

Outline

Parallel DAG scheduling:
– The ‘simple’ (static) case for heterogeneous

environments

– Uncertainties in execution time

– Scheduling multiple DAGs

– Multi-criteria scheduling

– Dealing with queues

– Adapting the DAG

• Conclusion

11

18 12 9 11 14

13 15
19 16 27 23

23

11
17 13

0

6

54321

87

9

Task M1 M2 M3

0 37 39 27

1 30 20 24

2 21 21 28

3 35 38 31

4 27 24 29

5 29 37 20

6 22 24 30

7 37 26 37

8 35 31 26

9 33 37 21

How did it all start?
The model assumes that we know
execution times on each machine
and communication between them

List scheduling is a well-known technique; we can make use of average
values to compute a weight for each node and determine a scheduling order

12

Two schedules for two different ways to calculate weights
Worst {0, 3, 5, 2, 1,4, 7, 8, 6, 9} Mean {0, 3, 5, 1, 2,4, 7, 8, 6, 9}

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170

Makespan: 143 Makespan: 164

0

8

1

2

3

9

4

7

6

5

0

8

2

1

3

9

4

76

5

Two Schedules – ~15% difference

13

The observation leads to the idea

Dividing tasks into levels may not be optimal…
…but strictly ranking tasks may not be optimal
either!
The idea: combine list scheduling with the
creation of groups (not necessarily level-based)

0

6

54321

87

9

0

6

54321

87

9

14

14 18 22 13 25

15 14 21 17
26 20

26 20 19

0

6

54321

87

9

Node M0 M1 M2

0 17 19 21

1 22 27 23

2 15 15 9

3 4 8 9

4 17 14 20

5 30 27 18

6 17 16 15

7 49 49 46

8 25 22 16

9 23 27 19

Machines Time for a
data unit

M0 – M1 0.9

M1 – M2 1.0

M0 – M2 1.4

HBMCT: An Example

15

Phase 1: Rank the nodes

Node Weight Rank

0 19 149.93

1 24 120.66

2 13 85.6

3 7 84.13

4 17 112.93

5 25 95.39

6 16 58.06

7 16 85.66

8 21 57.93

9 23 23.0

Mean + Upward Ranking

The order is {0, 1, 4, 5, 7, 2, 3, 6, 8, 9}

HBMCT: An Example

16

Phase 1: Rank the nodes

Phase 2: Create groups of independent tasks

The order is {0, 1, 4, 5, 7, 2, 3, 6, 8, 9}
0

6

54321

87

9

Group Tasks

0 {0}

1 {1, 4, 5}

2 {7, 2, 3}

3 {6, 8}

4 {9}

HBMCT: An Example

17

Phase 3: Schedule Independent Tasks in Group 0
Balanced Minimum Completion Time (BMCT)

M0 M1 M2
0

20

40

60

80

100

120

140

0 Initially assign each
task in the group to the
machine giving the
fastest time

No movement for the
entry task

HBMCT: An Example

18

Phase 3: Schedule Independent Tasks in Group 1
M0 M1 M2

0

20

40

60

80

100

120

140

0

1

5

Initially assign each task
in the group to the
machine giving the fastest
time

4

HBMCT: An Example

19

Phase 3: Schedule Independent Tasks in Group 1
M0 M1 M2

0

20

40

60

80

100

120

140

0

1

5

Initially assign each task
in the group to the
machine giving the fastest
time

M2 is the machine with the
Maximal Finish Time (70)

4

HBMCT: An Example

20

Phase 3: Schedule Independent Tasks in Group 1
M0 M1 M2

0

20

40

60

80

100

120

140

0

1

4
5 5

Task 5 moves to M0 since
it can achieve an earlier
overall finish time

Now M0 is the machine with
the Maximal Finish Time (69)

HBMCT: An Example

21

Phase 3: Schedule Independent Tasks in Group 1
M0 M1 M2

0

20

40

60

80

100

120

140

0

14

5

Task 1 moves to M2 since
it can achieve an earlier
overall finish time

Now M2 is the machine with
the Maximal Finish Time (59)

No task can be moved from
M2, the movement stops.

Schedule next group

HBMCT: An Example

22

Phase 3: Schedule Independent Tasks in Group 2
M0 M1 M2

0

20

40

60

80

100

120

140

0

5

1

7

3

2

4

Initially assign each task
in this group to the
machine giving the fastest
time

HBMCT: An Example

23

Phase 3: Schedule Independent Tasks in Group 2
M0 M1 M2

0

20

40

60

80

100

120

140

0

4

5

1

7

3

2

Task 2 moves to M1 since
it can achieve an earlier
overall finish time

M2 is the machine with
the Maximal Finish Time

No movement from M2

Schedule next group

HBMCT: An Example

24

Phase 3: Schedule Independent Tasks in Group 3
M0 M1 M2

0

20

40

60

80

100

120

140

0

4

5

1

7

3

6
8

2

Initially assign each task
in this group to the
machine giving the fastest
time

HBMCT: An Example

25

Phase 3: Schedule Independent Tasks in Group 3
M0 M1 M2

0

20

40

60

80

100

120

140

0

4

5

1

7

3
6 2

8

Task 6 moves to M0 since
it can achieve an earlier
overall finish time

M2 is the machine with
the Maximal Finish Time

HBMCT: An Example

26

Phase 3: Schedule Independent Tasks in Group 3
M0 M1 M2

0

20

40

60

80

100

120

140

0

4

5

1

7

3

26

8

Task 8 moves to M1 since
it can achieve an earlier
overall finish time

M1 is the machine with
the Maximal Finish Time

No movement from M1

Schedule next group

HBMCT: An Example

27

Phase 3: Schedule Independent Tasks in Group 4
M0 M1 M2

0

20

40

60

80

100

120

140

0

4

5

1

7

3

26

8

9

Initially assign each
task in this group to the
machine giving the fastest
time

No movement for the
exit task

HBMCT: An Example

28

M0 M1 M2

0

20

40

60

80

100

120

140

0

14

5

7

2

3

6

9

8

The Final Schedule

29

Lessons learned…

• This is not a universally good solution, but it has good
behaviour.

• A lot depends on the DAGs being used! (no benchmarks)
• We do not know how much space for improvement exists!
• Small tweaks may have a large impact.
• There is a trade-off between algorithm execution time and

performance. Not easy to assess this trade-off.
• There are more than two dozen heuristics in the literature,

all of them claiming some advantage!
• Personally, I wouldn’t see much space for another heuristic,

unless there is a clear breakthrough…

30

Outline (cont.)

�The ‘simple’ (static) case for heterogeneous
environments

– Uncertainties in execution time

– Scheduling multiple DAGs

– Multi-criteria scheduling

– Dealing with queues

– Adapting the DAG

31

Dealing with uncertainties…

If predicted execution times are not 100% accurate, a
possible solution is to rescheduleas the DAG is
being executed!

The problem: when exactly do we reschedule?
(rescheduling has a cost, hence we want to avoid
rescheduling too often)

The idea: characterize the DAG in terms of the
delays it can absorb and monitor these delays at
run-time; reschedule only when these delays will
result in an overall delay exceeding some amount.

32

The basic idea: an example

• If task A needs 10 time
units to execute and task B
needs 2 time units to
execute, task B has a slack
of 8 time units (assuming A
and B start execution at the
same time).

• This can be estimated for
the whole DAG.

• (highlights the importance
of the critical path)

A B

C

33

Lessons Learned…

• Heuristics that perform better statically, perform
better under uncertainties.

• An initially bad schedule cannot improve much with
rescheduling

(there is value in studying the problem in an idealized form)

• Some guarantees can be provided if the maximum
deviation from the static estimate is known.

• Essentially, the approach suggests rescheduling when
there are delays in the critical path

• Leaves space for further work – how do we model
uncertainties?

34

Let’s assume everything is uncertain!

• No task execution times are known.

• Then, one approach is to schedule tasks in such
a way that as many tasks as possible are enabled
(following the dependences).

• There is some work and some theoretically
interesting results are proven.

• Problem: if estimates or the execution times for
a few tasks are known a much better schedule
can be built using standard approaches.

35

Scheduling multiple DAGs

• A new mission: fairness
– It is easy to schedule DAGs, say, one after the

other; but what if we try to be fair to all DAGs?

• Every DAG will take longer to run, if it shares
resources with other DAGs.
– It will experience a slowdown proportional to the

ratio of makespanown/makespanmulti.

• For overall fairness we would like to minimize
the absolute difference of each DAG’s
slowdown from the average slowdown
(average slowdown over all DAGs)

36

Scheduling for Fairness

Key idea: at each step (that is, every time a
task is to be scheduled), select the most
affected DAG (that is, the DAG with the
lowest slowdown value as defined before)
to allocate a task from.

What is the most affected DAG at any given
point in time?

can be calculated based on the proportion of
the DAG already executed.

37

Lessons Learned

• How do we define fairness?

• What about other objectives?
– Some DAGs may get higher priority

– Throughput as opposed to slowdown may be
used (for example DAGs may need to produce
results at a certain rate)

Surprisingly little in the literature on
scheduling multiple DAGs!

38

Multi-criteria DAG scheduling

• Minimize at the same time:
– Schedule length (makespan) and (monetary) cost, or

– Schedule length and energy, or

– Energy and cost, or

– All three together!

• Can be combined with meeting deadlines!

• Topical problem!
– Some work on makespan and money.

– Paper on energy and cost/makespan to appear next month:
I.Pietri et al, Energy-Constrained Provisioning for Scientific
Workflow Ensembles. 3rd IEEE International Conference on
Cloud and Green Computing (CGC'13), 2013.

39

Multi-criteria DAG scheduling

• The idea:
– Start from a good solution for one objective and

try to meet the other(s).

• Our first work on budget-deadline scheduling:
– Start with a good schedule.

– Repeatedly select tasks that can move to cheaper
resources by checking for minimum values of:

(t_new – t_old) / (c_old – c_new)

Surprisingly good!

40

Issues with multi-criteria scheduling

• Topical (cloud computing)
• Energy constraints become a big issue. Little work yet

on the interplay between cost/energy/makespan.
• Preliminary results suggest that good resource

utilization may minimize energy consumed too.
• Studying the problem and the possible solutions can

help us understand how to (i) make good use of
resources, (ii) derive good pricing models.

• Large variety of DAGs:
– affects result
– Solutions are sensitive to small tweaks

• Data transfer is important
– Need to understand the platform

41

Understanding the platforms
• Queue-based platforms create additional problems as they have

different objectives. The carefully crafted schedule of the DAG
may be jeopardized!

• It is not clear if parallelism will be fully exploited; e.g., if the
three tasks above that can be executed in parallel are submitted
to 3 different queues of different length, there is no guarantee
that they will execute in parallel –job queues rule!

The execution model fails
to hide the latencies

resulting from the length
of job queues: these

determine the execution
time of the workflows.

42

Queues may dominate!

43

Bypassing queues

• Get rid of queues!
– Advance reservation

• Adaptive execution (adjust to the length of
the queues)

• In such cases, how to create an initial
schedule of the DAG becomes less
important. The latencies of the queues
dominate!

44

A final aspect of the problem

• Adapt the DAG!

• Executing a large DAG in parallel may increase
pressure on memory/storage.

• It may be useful to change from a wide and short
DAG to a long and thin. It will take longer to run
but it requires less resources (disk/memory)

• Requires some merging of tasks. Paper to appear:
W. Chen et al. Balanced task clustering in
scientific workflows. 9th IEEE International
Conference on e-Science (next month).

45

An Example
(“Optimizing Workflow Data Footprint”,

Scientific Programming)

46

Summary
DAG scheduling in large-scale systems

– Static case (only if breakthrough)
– Modelling uncertainties in execution time

• Interplay with performance prediction, good work exists.

– Scheduling multiple DAGs
• Not much is available.

– Multi-criteria DAG scheduling
• Work needed to understand the trade-off between time, money,

energy, resource utilization, etc… Topical (vis-à-vis Cloud)

– Adapting the DAG (and adaptive DAG scheduling)
• Lots of potential, requires some understanding of the DAG

Lots of parameters affect the outcome: small changes
may have a large impact.

An important problem for both theory and practice:
keeps reappearing in different forms.

47

Thank you!

Work carried out in collaboration with a number of
people (without whom it wouldn’t have been
possible):

• Henan Zhao
• Ilia Pietri
• Ewa Deelman
• Kevin Lee
• Viktor Yarmolenko
• Wei Zheng
and many more!

48

And some promotion…

• Summer School on Cloud Computing
– September 23rd - 24th, Karlsruhe, Germany

– Speakers: Ewa Deelman, Omer Rana, Markus Bauer,
Josef Spillner

– Lectures and hands-on tasks

– Funded through the SUCRE EU FP7 project

– http://www.sucreproject.eu/?q=summer-school
– http://service-summer.ksri.kit.edu/

