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The Problem
• Many applications can 

be represented by a 
Directed Acyclic 
Graph (DAG)

• Dependences between 
tasks (nodes) must be 
respected

• How do we allocate 
tasks onto machines to 
exploit parallelism and 
finish as soon as 
possible?
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Some background

• Parallel processing of precedence graphs 
has been studied as a problem since the 
1960s.

• Difficult to come up with generic solutions, 
we need heuristics with good performance.

• There are many variations to the problem.
• Good overview (of work until then) in 

ACM Computing Surveys (1999).
• In recent years, there has been an increased 

interest.
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A simple solution

• Divide the graph into 
‘levels’.

• Schedule each level 
as a ‘bag of 
independent tasks’

• May not always be 
possible to divide 
nicely.

• What if task (2) takes 
1 time unit to run, 
task (6) takes 9 units 
and all the rest takes 
5 units? 
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The key idea of a good solution
• Let’s assume we allocate tasks to machines one 

after the other, respecting dependences.

• How do we choose among multiple tasks?
– E.g., after 0 finishes, any of 1,2,3,4,5 can be selected.

• The order does matter!
– follow the critical path
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Key: we need to minimize 
the chance that machines will 
remain idle. Make sure there 

are tasks available. 
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Communication does matter too…

Tasks on the same 
machine will need no 
communication.
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Note the role of the critical 
path. If the communication 
between nodes 4 and 8 takes 
way too long, the length of the 
schedule will keep increasing.

Time
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Increased interest in recent years

• Lots of interest in applications which can be 
represented as DAGs with tens of thousands of 
nodes.

• Large-scale distributed/heterogeneous platforms
• Additional interesting dimensions to an already 

difficult problem:
– Execution environment (heterogeneous, queue-based)
– The objective is not the minimization of execution 

time only but (monetary) cost, energy, …

• Practical solutions are needed!
– Problems of more theoretical nature abound…
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Scientific Workflows

Many interesting scientific applications can be represented by DAGs

I. Taylor, E. Deelman, 
D. Gannon: Workflows 
for e-Science. Springer, 

2007
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The Montage Workflow

• Montage example: Generating science-grade mosaics 
of the sky

• http://montage.ipac.caltech.edu/
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Outline

Parallel DAG scheduling:
– The ‘simple’ (static) case for heterogeneous 

environments

– Uncertainties in execution time

– Scheduling multiple DAGs

– Multi-criteria scheduling

– Dealing with queues 

– Adapting the DAG

• Conclusion
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Task M1 M2 M3

0 37 39 27

1 30 20 24

2 21 21 28

3 35 38 31

4 27 24 29

5 29 37 20

6 22 24 30

7 37 26 37

8 35 31 26

9 33 37 21

How did it all start?
The model assumes that we know 
execution times on each machine 
and communication between them

List scheduling is a well-known technique; we can make use of average 
values to compute a weight for each node and determine a scheduling order
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Two schedules for two different ways to calculate weights
Worst {0, 3, 5, 2, 1,4, 7, 8, 6, 9}   Mean {0, 3, 5, 1, 2,4, 7, 8, 6, 9}
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The observation leads to the idea

Dividing tasks into levels may not be optimal…
…but strictly ranking tasks may not be optimal 
either!
The idea: combine list scheduling with the 
creation of groups (not necessarily level-based)
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Node M0 M1 M2

0 17 19 21

1 22 27 23

2 15 15 9

3 4 8 9

4 17 14 20

5 30 27 18

6 17 16 15

7 49 49 46

8 25 22 16

9 23 27 19

Machines Time for a 
data unit

M0 – M1 0.9

M1 – M2 1.0

M0 – M2 1.4

HBMCT: An Example
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Phase 1:  Rank the nodes

Node Weight Rank

0 19 149.93

1 24 120.66

2 13 85.6

3 7 84.13

4 17 112.93

5 25 95.39

6 16 58.06

7 16 85.66

8 21 57.93

9 23 23.0

Mean + Upward Ranking

The order is {0, 1, 4, 5, 7, 2, 3, 6, 8, 9}

HBMCT: An Example
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Phase 1:  Rank the nodes

Phase 2: Create groups of independent tasks

The order is {0, 1, 4, 5, 7, 2, 3, 6, 8, 9}
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Group Tasks

0 {0}

1 {1, 4, 5}

2 {7, 2, 3}

3 {6, 8}

4 {9}

HBMCT: An Example
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Phase 3: Schedule Independent Tasks in Group 0
Balanced Minimum Completion Time (BMCT)

M0                    M1                    M2
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0 Initially assign each 
task in the group to the 
machine giving the 
fastest time

No movement for the 
entry task

HBMCT: An Example
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Phase 3: Schedule Independent Tasks in Group 1
M0                    M1                    M2
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HBMCT: An Example
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Phase 3: Schedule Independent Tasks in Group 1 
M0                    M1                   M2
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Initially assign each task 
in the group to the 
machine giving the fastest 
time

M2 is the machine with the 
Maximal Finish Time (70)
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HBMCT: An Example
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Phase 3: Schedule Independent Tasks in Group 1
M0                     M1                   M2
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Task 5 moves to M0 since 
it can achieve an earlier 
overall finish time

Now M0 is the machine with 
the Maximal Finish Time (69)

HBMCT: An Example
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Phase 3: Schedule Independent Tasks in Group 1
M0                    M1                    M2
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Task 1 moves to M2 since 
it can achieve an earlier 
overall finish time

Now M2 is the machine with 
the Maximal Finish Time (59)  

No task can be moved from 
M2, the movement stops.

Schedule next group

HBMCT: An Example



22

Phase 3: Schedule Independent Tasks in Group 2
M0                    M1                    M2
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Initially assign each task 
in this group to the 
machine giving the fastest 
time

HBMCT: An Example
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Phase 3: Schedule Independent Tasks in Group 2
M0                    M1                    M2
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Task 2 moves to M1 since 
it can achieve an earlier 
overall finish time 

M2 is the machine with 
the Maximal Finish Time

No movement from M2

Schedule next group

HBMCT: An Example
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Phase 3: Schedule Independent Tasks in Group 3
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Initially assign each task 
in this group to the 
machine giving the fastest 
time

HBMCT: An Example
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Phase 3: Schedule Independent Tasks in Group 3 
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0

20

40

60

80

100

120

140

0

4

5

1

7

3
6 2

8

Task 6 moves to M0 since 
it can achieve an earlier  
overall finish time 

M2 is the machine with 
the Maximal Finish Time

HBMCT: An Example
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Phase 3: Schedule Independent Tasks in Group 3
M0                    M1                    M2
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Task 8 moves to M1 since 
it can achieve an earlier    
overall finish time 

M1 is the machine with 
the Maximal Finish Time

No movement from M1

Schedule next group

HBMCT: An Example
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Phase 3: Schedule Independent Tasks in Group 4
M0                    M1                    M2
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Initially assign each 
task in this group to the 
machine giving the fastest 
time

No movement for the 
exit task

HBMCT: An Example
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The Final Schedule
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Lessons learned…

• This is not a universally good solution, but it has good 
behaviour.

• A lot depends on the DAGs being used! (no benchmarks)
• We do not know how much space for improvement exists! 
• Small tweaks may have a large impact.
• There is a trade-off between algorithm execution time and 

performance. Not easy to assess this trade-off.
• There are more than two dozen heuristics in the literature, 

all of them claiming some advantage!
• Personally, I wouldn’t see much space for another heuristic, 

unless there is a clear breakthrough…
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Outline (cont.)

�The ‘simple’ (static) case for heterogeneous 
environments

– Uncertainties in execution time

– Scheduling multiple DAGs

– Multi-criteria scheduling

– Dealing with queues 

– Adapting the DAG
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Dealing with uncertainties…

If predicted execution times are not 100% accurate, a 
possible solution is to rescheduleas the DAG is 
being executed!

The problem: when exactly do we reschedule? 
(rescheduling has a cost, hence we want to avoid 
rescheduling too often)

The idea: characterize the DAG in terms of the 
delays it can absorb and monitor these delays at 
run-time; reschedule only when these delays will 
result in an overall delay exceeding some amount. 
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The basic idea: an example

• If task A needs 10 time 
units to execute and task B 
needs 2 time units to 
execute, task B has a slack 
of 8 time units (assuming A 
and B start execution at the 
same time).

• This can be estimated for 
the whole DAG.

• (highlights the importance 
of the critical path)

A B

C
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Lessons Learned…

• Heuristics that perform better statically, perform 
better under uncertainties.

• An initially bad schedule cannot improve much with 
rescheduling

(there is value in studying the problem in an idealized form)

• Some guarantees can be provided if the maximum 
deviation from the static estimate is known.

• Essentially, the approach suggests rescheduling when 
there are delays in the critical path 

• Leaves space for further work – how do we model 
uncertainties?
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Let’s assume everything is uncertain!

• No task execution times are known.

• Then, one approach is to schedule tasks in such 
a way that as many tasks as possible are enabled 
(following the dependences).

• There is some work and some theoretically 
interesting results are proven.

• Problem: if estimates or the execution times for 
a few tasks are known a much better schedule 
can be built using standard approaches.
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Scheduling multiple DAGs

• A new mission: fairness
– It is easy to schedule DAGs, say, one after the 

other; but what if we try to be fair to all DAGs?

• Every DAG will take longer to run, if it shares 
resources with other DAGs.
– It will experience a slowdown proportional to the 

ratio of makespanown/makespanmulti.

• For overall fairness we would like to minimize 
the absolute difference of each DAG’s 
slowdown from the average slowdown 
(average slowdown over all DAGs)
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Scheduling for Fairness

Key idea:  at each step (that is, every time a 
task is to be scheduled), select the most 
affected DAG (that is, the DAG with the 
lowest slowdown value as defined before) 
to allocate a task from.

What is the most affected DAG at any given 
point in time?

can be calculated based on the proportion of 
the DAG already executed.
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Lessons Learned

• How do we define fairness?

• What about other objectives?
– Some DAGs may get higher priority

– Throughput as opposed to slowdown may be 
used (for example DAGs may need to produce 
results at a certain rate)

Surprisingly little in the literature on 
scheduling multiple DAGs!
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Multi-criteria DAG scheduling

• Minimize at the same time:
– Schedule length (makespan) and (monetary) cost, or

– Schedule length and energy, or

– Energy and cost, or

– All three together!

• Can be combined with meeting deadlines!

• Topical problem!
– Some work on makespan and money.

– Paper on energy and cost/makespan to appear next month: 
I.Pietri et al, Energy-Constrained Provisioning for Scientific 
Workflow Ensembles. 3rd IEEE International Conference on 
Cloud and Green Computing (CGC'13), 2013. 
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Multi-criteria DAG scheduling

• The idea:
– Start from a good solution for one objective and 

try to meet the other(s).

• Our first work on budget-deadline scheduling:
– Start with a good schedule.

– Repeatedly select tasks that can move to cheaper 
resources by checking for minimum values of:

(t_new – t_old) / (c_old – c_new)

Surprisingly good!
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Issues with multi-criteria scheduling

• Topical (cloud computing)
• Energy constraints become a big issue. Little work yet 

on the interplay between cost/energy/makespan.
• Preliminary results suggest that good resource 

utilization may minimize energy consumed too.
• Studying the problem and the possible solutions can 

help us understand how to (i) make good use of 
resources, (ii) derive good pricing models.

• Large variety of DAGs:
– affects result
– Solutions are sensitive to small tweaks

• Data transfer is important
– Need to understand the platform
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Understanding the platforms
• Queue-based platforms create additional problems as they have 

different objectives. The carefully crafted schedule of the DAG 
may be jeopardized!

• It is not clear if parallelism will be fully exploited; e.g., if the 
three tasks above that can be executed in parallel are submitted
to 3 different queues of different length, there is no guarantee
that they will execute in parallel –job queues rule!

The execution model fails 
to hide the latencies 

resulting from the length 
of job queues: these 

determine the execution 
time of the workflows.
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Queues may dominate!
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Bypassing queues

• Get rid of queues!
– Advance reservation

• Adaptive execution (adjust to the length of 
the queues)

• In such cases, how to create an initial 
schedule of the DAG becomes less 
important. The latencies of the queues 
dominate!
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A final aspect of the problem

• Adapt the DAG!

• Executing a large DAG in parallel may increase 
pressure on memory/storage. 

• It may be useful to change from a wide and short 
DAG to a long and thin. It will take longer to run 
but it requires less resources (disk/memory)

• Requires some merging of tasks. Paper to appear: 
W. Chen et al. Balanced task clustering in 
scientific workflows. 9th IEEE International 
Conference on e-Science (next month).
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An Example
(“Optimizing Workflow Data Footprint”, 

Scientific Programming)
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Summary
DAG scheduling in large-scale systems

– Static case (only if breakthrough)
– Modelling uncertainties in execution time 

• Interplay with performance prediction, good work exists.

– Scheduling multiple DAGs
• Not much is available.

– Multi-criteria DAG scheduling
• Work needed to understand the trade-off between time, money, 

energy, resource utilization, etc… Topical (vis-à-vis Cloud)

– Adapting the DAG (and adaptive DAG scheduling)
• Lots of potential, requires some understanding of the DAG

Lots of parameters affect the outcome: small changes 
may have a large impact. 

An important problem for both theory and practice: 
keeps reappearing in different forms.
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Thank you!

Work carried out in collaboration with a number of 
people (without whom it wouldn’t have been 
possible):

• Henan Zhao
• Ilia Pietri
• Ewa Deelman
• Kevin Lee
• Viktor Yarmolenko
• Wei Zheng
and many more!



48

And some promotion…

• Summer School on Cloud Computing
– September 23rd - 24th, Karlsruhe, Germany

– Speakers: Ewa Deelman, Omer Rana, Markus Bauer, 
Josef Spillner

– Lectures and hands-on tasks

– Funded through the SUCRE EU FP7 project

– http://www.sucreproject.eu/?q=summer-school
– http://service-summer.ksri.kit.edu/


