
Avoiding communication
in linear algebra

Laura Grigori
ALPINES

INRIA Rocquencourt - LJLL, UPMC

Page 2

Plan
•  Motivation

•  Selected past work on reducing communication

•  Communication complexity of linear algebra operations

•  Communication avoiding for dense linear algebra
•  LU, QR, Rank Revealing QR factorizations

•  Often not in ScaLAPACK or LAPACK (YET !)

•  Algorithms for multicore processors

•  Communication avoiding for sparse linear algebra
•  Iterative methods and preconditioning

•  Conclusions

Page 3

Data driven science

CO2 Underground storage

Astrophysics: CMB data analysis

http://www.epm.ornl.gov/chammp/chammp.html

Climate modeling

 Numerical simulations require
increasingly computing power as
data sets grow exponentially

Figures from astrophysics:
•  Produce and analyze multi-frequency 2D images of

the universe when it was 5% of its current age.
•  COBE (1989) collected 10 gigabytes of data, required

1 Teraflop per image analysis.
•  PLANCK (2010) produced 1 terabyte of data, requires

100 Petaflops per image analysis.
•  CMBPol (2020) is estimated to collect .5 petabytes of

data, will require 100 Exaflops per image analysis.
Source: J. Borrill, LBNL, R. Stompor, Paris 7

http://www.scidacreview.org/0704/html/cmb.html

Source: T. Guignon, IFPEN

Page 4

Motivation - the communication wall
•  Runtime of an algorithm is the sum of:

•  #flops x time_per_flop
•  #words_moved / bandwidth
•  #messages x latency

•  Time to move data >> time per flop
•  Gap steadily and exponentially growing over time

•  Performance of an application is less than 10% of the peak performance

 “We are going to hit the memory wall, unless something basic changes” [W. Wulf, S.
McKee, 95]

Annual improvements
Time/flop Bandwidth Latency

59%
Network 26% 15%

DRAM 23% 5%

Page 5

Motivation

•  The communication problem needs to be taken into account
higher in the computing stack

•  A paradigm shift in the way the numerical algorithms are
devised is required

•  Communication avoiding algorithms - a novel perspective for
numerical linear algebra
•  Minimize volume of communication
•  Minimize number of messages
•  Minimize over multiple levels of memory/parallelism
•  Allow redundant computations (preferably as a low order term)

Page 6

Previous work on reducing communication

•  Tuning
•  Overlap communication and computation, at most a factor of 2 speedup

•  Ghosting
•  Store redundantly data from neighboring processors for future computations

•  Scheduling
•  Block algorithms for linear algebra

•  Barron and Swinnerton-Dyer, 1960
•  ScaLAPACK, Blackford et al 97

•  Cache oblivious algorithms for linear
 algebra

•  Gustavson 97, Toledo 97, Frens and
 Wise 03, Ahmed and Pingali 00

Page 7

Communication in CMB data analysis
•  Map-making problem

•  Find the best map x from observations d, scanning strategy A, and noise N−1
•  Solve generalized least squares problem involving sparse matrices of size 1012-by-107

•  Spherical harmonic transform (SHT)
•  Synthesize a sky image from its harmonic representation

•  Computation over rows of a 2D object (summation of spherical harmonics)
•  Communication to transpose the 2D object
•  Computation over columns of the 2D object (FFTs)

Map making, with R. Stompor, M. Szydlarski
Results obtained on Hopper, Cray XE6, NERSC

SHT, with R. Stompor, M. Szydlarski
Simulation on a petascale computer

Computation

Communication

Overall runtime

Page 8

Communication Complexity of
Dense Linear Algebra

•  Matrix multiply, using 2n3 flops (sequential or parallel)
•  Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
•  Lower bound on Bandwidth = Ω (#flops / M1/2)
•  Lower bound on Latency = Ω (#flops / M3/2)

€

I −B
A I

I

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

=

I
A I

I

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟
.
I −B

I AB
I

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

•  Same lower bounds apply to LU using reduction
•  Demmel, LG, Hoemmen, Langou 2008

•  And to almost all direct linear algebra [Ballard, Demmel, Holtz,
Schwartz, 09]

Page 9

2D Parallel algorithms and communication bounds

Algorithm Minimizing
 #words (not #messages)

Minimizing
#words and #messages

Cholesky ScaLAPACK ScaLAPACK

LU ScaLAPACK
uses partial pivoting

 [LG, Demmel, Xiang, 08]
[Khabou, Demmel, LG, Gu, 12]

uses tournament pivoting

QR ScaLAPACK [Demmel, LG, Hoemmen, Langou, 08]
uses different representation of Q

RRQR ScaLAPACK [Branescu, Demmel, LG, Gu, Xiang 11]
uses tournament pivoting, 3x flops

•  Only several references shown, block algorithms (ScaLAPACK) and
 communication avoiding algorithms

•  If memory per processor = n2 / P, the lower bounds become
 #words_moved ≥ Ω (n2 / P1/2), #messages ≥ Ω (P1/2)

Page 10

LU factorization (as in ScaLAPACK pdgetrf)
LU factorization on a P = Pr x Pc grid of processors
For ib = 1 to n-1 step b
 A(ib)	 = A(ib:n, ib:n)

 (1) Compute panel factorization
 - find pivot in each column, swap rows

 (2) Apply all row permutations
 - broadcast pivot information along the rows
 - swap rows at left and right

(3) Compute block row of U
 - broadcast right diagonal block of L of current panel

 (4) Update trailing matrix
 - broadcast right block column of L
 - broadcast down block row of U

L	

U	

A(ib)	

L	

U	

A(ib+b)	

L	

U	

A(ib)	

L	

U	

A(ib)	

)log(2 rPnO

)log/(2 cPbnO

))log(log/(22 rc PPbnO +

))log(log/(22 rc PPbnO +

#messages

Page 11

TSQR: QR factorization of a tall skinny matrix
using Householder transformations

W	 =	 	

W0	
W1	
W2	
W3	

R00	
R10	
R20	
R30	

R01	

R11	

R02	

•  QR decomposition of m x b matrix W, m >> b
•  P processors, block row layout

•  Classic Parallel Algorithm
•  Compute Householder vector for each column
•  Number of messages ∝ b log P

•  Communication Avoiding Algorithm
•  Reduction operation, with QR as operator
•  Number of messages ∝ log P

J. Demmel, LG, M. Hoemmen, J. Langou, 08

Page 12

Parallel TSQR

QR

	 R00	 V00`
	 W0

	

R10	 V10
	 W1

	

R20	 V20
	 W2

	

R30	 V30
	 W3

	

R00	

R10	
V01

	 R01	

R20	

R30	
V11

	 R11	

P0	

P1	

P2	

P3	

V02
	 R02	 R01	

R11	

QR

QR

QR

QR

QR

QR

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha,
 Becker, Patterson, 02

Page 13
Q is represented implicitly as a product

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

30

20

10

00

30

20

10

00

3

2

1

0

.

R
R
R
R

Q
Q

Q
Q

W
W
W
W

W

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

11

01

11

01

30

20

10

00

.
R
R

Q
Q

R
R
R
R

0202
11

01 RQ
R
R

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Flexibility of TSQR and CAQR algorithms

W	 =	 	

W0	
W1	
W2	
W3	

R00	
R10	
R20	
R30	

R01	

R11	

R02	 Parallel:	

W	 =	 	

W0	
W1	
W2	
W3	

R01	
R02	

R00	

R03	
Sequen5al:	

W	 =	 	

W0	
W1	
W2	
W3	

R00	
R01	

R01	
R11	

R02	

R11	
R03	

Dual	 Core:	

Reduc5on	 tree	 will	 depend	 on	 the	 underlying	 architecture,	
could	 be	 chosen	 dynamically	

Page 14

Modeled Speedups of CAQR vs ScaLAPACK

Petascale	 	
	 	 	 	 	 	 up	 to	 22.9x	

IBM	 Power	 5	
	 	 	 	 	 	 up	 to	 9.7x	

“Grid”	
	 	 	 	 	 	 up	 to	 11x	

	 Petascale	 machine	 with	 8192	 procs,	 each	 at	 500	 GFlops/s,	 a	 bandwidth	 of	 4	 GB/s.	
./102,10,102 9512 wordsss −−− ⋅==⋅= βαγ

Page 15

Obvious generalization of TSQR to LU

•  Block parallel pivoting:
•  uses a binary tree and is optimal in the parallel case

•  Block pairwise pivoting:
•  uses a flat tree and is optimal in the sequential case
•  introduced by Barron and Swinnerton-Dyer, 1960: block LU factorization used to solve a

system with 100 equations on EDSAC 2 computer using an auxiliary magnetic-tape
•  used in PLASMA for multicore architectures and FLAME for out-of-core algorithms and

for multicore architectures

W	 =	 	

W0	
W1	
W2	
W3	

U00	
U10	
U20	
U30	

U01	

U11	

U02	

W=	 	

W0	
W1	
W2	
W3	

U01	
U02	

U00	

U03	

Page 16

Stability of the LU factorization
•  The backward stability of the LU factorization of a matrix A of size n-by-n

 depends on the growth factor

 where aij
k are the values at the k-th step.

•  gW ≤ 2n-1 , but in practice it is on the order of n2/3 -- n1/2

•  Two reasons considered to be important for the average case stability [Trefethen and
Schreiber, 90] :

 - the multipliers in L are small,

 - the correction introduced at each elimination step is of rank 1.

€

gW =
maxi, j ,k aij

k

maxi, j aij

€

L ⋅ U
∞
≤ (1+ 2(n2 − n)gw) A ∞

Page 17

Block parallel pivoting

•  Unstable for large number of processors P

•  When P=number rows, it corresponds to parallel pivoting, known to be unstable
(Trefethen and Schreiber, 90)

Page 18

Tournament pivoting - the overall idea

•  At each iteration of a block algorithm

 , where

•  Preprocess W to find at low communication cost good pivots for the LU
factorization of W, return a permutation matrix P.

•  Permute the pivots to top, ie compute PA.
•  Compute LU with no pivoting of W, update trailing matrix.

€

W =
A11
A21

⎛

⎝
⎜

⎞

⎠
⎟

€

A =
A11 A21
A21 A22

⎛

⎝
⎜

⎞

⎠
⎟

€

}
}

b
n − b

€

b n − b
} }

€

PA =
L11
L21 In−b

⎛

⎝
⎜

⎞

⎠
⎟
U11 U12

A22 − L21U12

⎛

⎝
⎜

⎞

⎠
⎟

Page 19

Tournament pivoting

time

P0	

P1	

P2	

P3	

€

2 4
0 1
2 0
1 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π0L0U0

€

2 0
0 0
4 1
1 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π1L1U1

€

0 1
1 4
0 0
0 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π2L2U2

€

2 1
0 2
1 0
4 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π3L3U3

€

2 4
2 0
⎛

⎝
⎜

⎞

⎠
⎟

€

4 1
2 0
⎛

⎝
⎜

⎞

⎠
⎟

€

1 4
0 2
⎛

⎝
⎜

⎞

⎠
⎟

€

4 2
0 2
⎛

⎝
⎜

⎞

⎠
⎟

€

2 4
2 0
4 1
2 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π0L0U0

€

1 4
0 2
4 2
0 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π2L2U 2

€

4 1
2 4
⎛

⎝
⎜

⎞

⎠
⎟

€

4 2
1 4
⎛

⎝
⎜

⎞

⎠
⎟

€

4 1
2 4
4 2
1 4

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π0L0U 0

€

4 1
1 4
⎛

⎝
⎜

⎞

⎠
⎟

€

W0

€

Π0
TW0

€

W0

€

Π0
T
W 0

€

W 0

€

Π0
TW 0

€

W1

€

Π1
TW1

€

W2

€

Π2
TW2

€

W2

€

Π2
T
W 2

€

W3

€

Π3
TW3

Good pivots for
factorizing W

Page 20

Stability of CALU (experimental results)

Summer School Lecture 4 20

•  Results show ||PA-LU||/||A||, normwise and componentwise backward
errors, for random matrices and special ones

•  See [LG, Demmel, Xiang, 2010] for details
•  BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU

Page 21

Lightweight scheduling for CALU
Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Task dependency graph of CALU

Donfack, LG, Gropp, Kale, IPDPS 2012

Page 22

Plan
•  Motivation

•  Selected past work on reducing communication

•  Communication complexity of linear algebra operations

•  Communication avoiding for dense linear algebra
•  LU, LU_PRRP, QR, Rank Revealing QR factorizations

•  Often not in ScaLAPACK or LAPACK

•  Algorithms for multicore processors

•  Communication avoiding for sparse linear algebra
•  Iterative methods and preconditioning

•  Conclusions

Page 23

Communication in Krylov subspace methods
 Iterative methods to solve Ax =b

•  Find a solution xk from x0 + Kk (A, r0), where Kk (A, r0) = span {r0, A r0, …, Ak-1 r0}
such that the Petrov-Galerkin condition b - Axk ⊥ Lk is satisfied.

•  For numerical stability, an orthonormal basis {q1, q2,…, qk} for Kk (A, r0) is
computed (CG, GMRES, BiCGstab,…)

•  Each iteration requires
•  Sparse matrix vector product
•  Dot products for the orthogonalization process

•  S-step Krylov subspace methods
•  Unroll s iterations, orthogonalize every s steps

•  Van Rosendale ‘83, Walker ‘85, Chronopoulous and Gear ‘89, Erhel ‘93, Toledo ‘95, Bai, Hu, Reichel
‘91 (Newton basis), Joubert and Carey ‘92 (Chebyshev basis), etc.

•  Recent references: G. Atenekeng, B. Philippe, E. Kamgnia (to enable multiplicative Schwarz
preconditioner), J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yellick (to minimize communication,
next slide)

Page 24

Minimizing communication in iterative solvers

•  To minimize communication
•  Generate a set of s vectors (Ab, A2b, …, Asb)
•  Orthogonalize the s vectors, check convergence

However
•  Important instability problem to address (monomial basis)
•  CA-preconditioners to further decrease the number of iterations

Source: M. Hoemmen

Domain and ghost data to compute Ax, A2 x, …
on one processor with no communication

O(log P) messages, optimal

Page 25

Research opportunities and limitations
Length of the basis “s” is limited by
•  Size of ghost data
•  Loss of precision

Preconditioners: few identified so far to work with s-step methods
•  Highly decoupled preconditioners: Block Jacobi
•  Hierarchical, semiseparable matrices (M. Hoemmen, J. Demmel)

A look at three classes of preconditioners
•  Incomplete LU factorizations (joint work with S. Moufawad, talk in MS later

today)
•  Two level preconditioners in DDM
•  Deflation techniques through preconditioning

s-steps Memory Flops
GMRES O(s n/P) O(s n/P)

CA-
GMRES

O(s n/P)+
O(s (n/P)2/3)+
O(s2 (n/P)1/3)

O(s n/P)+
O(s2 (n/P)2/3)+
O(s3 (n/P)1/3)

Cost for a 3D regular grid, 7 pt stencil

Page 26

Compute xi = (LU)-1 A xi-1 using 3 steps:
1.  Compute f = A xi-1

2.  Forward substitution: solve Lz = f
3.  Backward substitution: solve Uxi = z

ILU0 with nested dissection and ghosting

Let α0 be the set of equations to be solved by one processor
For j = 1 to s do

 Find δj = Adj (G(A), γj)
 Set αj = δj
end

Ghost data required:
 x(δ), A(γ,δ),
 L(γ,γ), U(β, β) Find βj = ReachableVertices (G(U), αj-1)

Find γj = ReachableVertices (G(L), βj)

5 point stencil on a 2D grid

⇒  Half of the work
performed on one processor

Page 27

CA-ILU0 with AMML reordering and ghosting
•  Reduce volume of ghost data by reordering the vertices using

Alternating Min-Max Layers (AMML) reordering:
•  First number the vertices at odd distance from the separators
•  Then number the vertices at even distance from the separators

•  CA-ILU0 computes a standard ILU0 factorization

5 point stencil on a 2D grid

Page 28

Comparison with Block Jacobi
•  Block Jacobi is another preconditioner which does not require communication

for one step of an iterative method
•  Tests for a boundary value problem (provided by Achdou, Nataf), 40x40x40 grid

Methods tested:
•  Natural ordering NO+ILU0
•  CA-ILU0 - kway+AMML(1)+ILU0
•  Block Jacobi using LU - BJ+ILU0
•  Block Jacobi using ILU0 - BJ-ILU0

€

−div(κ(x)∇u) = f inΩ
u = 0 on∂ΩD

∂u
∂n

= 0 on∂ΩN

€

Ω = 0,1[]3,∂ΩN = ∂Ω \∂ΩD

€

κ jumps from 1 to 103

Page 29

Many preconditioners (as ILU) have
 plateaus in the convergence, often due to
 the presence of few low eigenvalues

Direction preserving factorization
•  Preconditioner M satisfies a filtering property
 MT = AT or TTM = TTA
•  Filtering vectors T are chosen to improve the convergence

Block Filtering (BFD) and Nested Filtering (NFF) Preconditioners
R. Fezzani, LG, P. Kumar, R. Lacroix, F. Nataf, L. Qu, K. Wang
•  Algebraic preconditioners based on nested dissection and block/nested factorization
•  Every Schur complement is approximated to satisfy the filtering property:

Challenge in getting scalable preconditioners
Source: Y. Achdou, F. Nataf

€

LikDkk
−1Ukjt = LikFkjUkjt, e.g. Fkj = Diag Dkk

−1Ukjt()./ Ukjt()()

Page 30

•  Pointwise approximate factorization satisfying a row-sum criteria, Dupont,
Kendall, and Rachford (1968), Gustafsson (1978)
•  Improves the condition number of the preconditioned matrix for matrices

arising from finite difference approximation of second order elliptic equations
•  Nested factorization, Appleyard, Cheshire (1983)

•  If tTr0 = 0, then at any iteration tTrk = 0, ensures a mass conservation property
•  Filtering factorization, Wagner, Wittum (1997), Achdou, Nataf (2001)

•  Direction preserving semiseparable approximation of SPD matrices, Gu, Li,
Vassilevski (2010)
•  If the near null-space of the original fine grid matrix is preserved, then view

the preconditioner as a coarse discretization matrix
•  Conditioning analysis performed by Napov, components dropped are

orthogonal to components preserved
•  Multigrid methods

•  Bootstrup AMG (Brandt, Brannick, Kahl, and Livshits)

Preserving directions of interest

Page 31

Results for a boundary value problem
•  SKY (provided by Achdou, Nataf), discretized on a 225x225x225 grid (11.3 millions

unknowns) and 400x400x400 grid (64 millions unknowns, 447 millions nonzeros)

•  Tests use GMRES (PETSc), tolerance = 10-8
€

−div(κ(x)∇u) = f inΩ
u = 0 on∂ΩD

∂u
∂n

= 0 on∂ΩN €

Ω = 0,1[]3,∂ΩN = ∂Ω \∂ΩD

NFF, SKY 400x400x400 SKY 15x15x15
NFF, SKY 225x225x225

Page 32

Comparison with Restricted Additive Schwarz (RAS)

Settings:
•  Curie supercomputer based on Bullx

system, nodes composed of two
eight-core Intel Sandy Bridge.

•  Subdomains solved using Pardiso,
separators solved using MUMPS.

•  GMRES and RAS from PETSc.

NFF vs RAS, SKY 400x400x400 NFF vs RAS, SKY 225x225x225

Best student paper finalist, Qu, LG, Nataf, SC’13 (talk in MS later today)

Subdom Iteration Error Iteration Error

256 5489 5.9e-7 268 2.2e-6

512 6126 2.7e-6 273 3.2e-6

1024 7163 1.8e-6 289 2.6e-6

2048 10000 3.7e-6 317 3.8e-6

NFF vs RAS, SKY 400x400x400

Page 33

Conclusions

•  Introduced a new class of communication avoiding algorithms that
minimize communication
•  Attain theoretical lower bounds on communication

•  Minimize communication at the cost of redundant computation

•  Are often faster than conventional algorithms in practice

•  Remains a lot to do for sparse linear algebra
•  Communication bounds, communication optimal algorithms

•  Numerical stability of s-step methods

•  Alternatives as block iterative methods, pipelined iterative methods (Vanroose
et al., talk in MS later today)

•  Preconditioners - limited by memory and communication, not flops

•  And BEYOND

Page 34

Collaborators, funding
Collaborators:

•  S. Donfack, INRIA, A. Khabou, INRIA, M. Jacquelin, INRIA, L. Qu, Paris 11, F.
Nataf, CNRS, S. Moufawad, INRIA, H. Xiang, Wuhan University

•  J. Demmel, UC Berkeley, B. Gropp, UIUC, M. Gu, UC Berkeley, M. Hoemmen, UC
Berkeley, J. Langou, CU Denver, V. Kale, UIUC

Funding: ANR Petal and Petalh projects, ANR Midas, Digiteo Xscale NL,
COALA INRIA funding

Further information:
 http://www-rocq.inria.fr/who/Laura.Grigori/

Page 35

References

Results presented from:
•  J. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou, Communication-optimal parallel and sequential

QR and LU factorizations, UCB-EECS-2008-89, 2008, published in SIAM journal on Scientific
Computing, Vol. 34, No 1, 2012.

•  L. Grigori, J. Demmel, and H. Xiang, Communication avoiding Gaussian elimination, Proceedings of the
IEEE/ACM SuperComputing SC08 Conference, November 2008.

•  L. Grigori, J. Demmel, and H. Xiang, CALU: a communication optimal LU factorization algorithm, SIAM.
J. Matrix Anal. & Appl., 32, pp. 1317-1350, 2011.

•  M. Hoemmen’s Phd thesis, Communication avoiding Krylov subspace methods, 2010.
•  L. Grigori, P.-Y. David, J. Demmel, and S. Peyronnet, Brief announcement: Lower bounds on

communication for sparse Cholesky factorization of a model problem, ACM SPAA 2010.
•  S. Donfack, L. Grigori, and A. Kumar Gupta, Adapting communication-avoiding LU and QR

factorizations to multicore architectures, Proceedings of IEEE International Parallel & Distributed
Processing Symposium IPDPS, April 2010.

•  S. Donfack, L. Grigori, W. Gropp, and V. Kale, Hybrid static/dynamic scheduling for already optimized
dense matrix factorization , Proceedings of IEEE International Parallel & Distributed Processing
Symposium IPDPS, 2012.

•  A. Khabou, J. Demmel, L. Grigori, and M. Gu, LU factorization with panel rank revealing pivoting and its
communication avoiding version, LAWN 263, 2012.

•  L. Grigori, S. Moufawad, Communication avoiding incomplete LU preconditioner, in preparation, 2012

