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Plan 
•  Motivation 

•  Selected past work on reducing communication 

•  Communication complexity of linear algebra operations 

•  Communication avoiding for dense linear algebra  
•  LU, QR, Rank Revealing QR factorizations 

•  Often not in ScaLAPACK or LAPACK (YET !) 

•  Algorithms for multicore processors 

•  Communication avoiding for sparse linear algebra  
•  Iterative methods and preconditioning 

•  Conclusions 
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Data driven science 

CO2 Underground storage 

Astrophysics: CMB data analysis 

http://www.epm.ornl.gov/chammp/chammp.html 

Climate modeling 

     Numerical simulations require 
increasingly computing power as 
data sets grow exponentially 

Figures from astrophysics: 
•  Produce and analyze multi-frequency 2D images of 

the universe when it was 5% of its current age. 
•  COBE (1989) collected 10 gigabytes of data, required 

1 Teraflop per image analysis. 
•  PLANCK (2010) produced 1 terabyte of data, requires 

100 Petaflops per image analysis. 
•  CMBPol (2020) is estimated to collect .5 petabytes of 

data, will require 100 Exaflops per image analysis. 
Source: J. Borrill, LBNL, R. Stompor, Paris 7 

http://www.scidacreview.org/0704/html/cmb.html 

Source: T. Guignon, IFPEN 
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Motivation - the communication wall 
•  Runtime of an algorithm is the sum of: 

•  #flops x time_per_flop 
•  #words_moved / bandwidth  
•  #messages x latency 

•  Time to move data >> time per flop 
•  Gap steadily and exponentially growing over time  

•  Performance of an application is less than 10% of the peak performance 

   “We are going to hit the memory wall, unless something basic changes”   [W. Wulf, S. 
McKee, 95] 

Annual improvements 
Time/flop Bandwidth Latency 

59% 
Network 26% 15% 

DRAM 23% 5% 
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Motivation  

•  The communication problem needs to be taken into account 
higher in the computing stack 

•  A paradigm shift in the way the numerical algorithms are 
devised is required 

•  Communication avoiding algorithms - a novel perspective for 
numerical linear algebra 
•  Minimize volume of communication 
•  Minimize number of messages 
•  Minimize over multiple levels of memory/parallelism 
•  Allow redundant computations (preferably as a low order term) 
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Previous work on reducing communication 

•  Tuning 
•  Overlap communication and computation, at most a factor of 2 speedup 

•  Ghosting  
•  Store redundantly data from neighboring processors for future computations 

•  Scheduling 
•  Block algorithms for linear algebra 

•  Barron and Swinnerton-Dyer, 1960 
•  ScaLAPACK, Blackford et al 97 

•   Cache oblivious algorithms for linear  
      algebra  

•  Gustavson 97, Toledo 97, Frens and  
      Wise 03, Ahmed and Pingali 00 
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Communication in CMB data analysis 
•  Map-making problem 

•  Find the best map x from observations d, scanning strategy A, and noise N−1  
•  Solve generalized least squares problem involving sparse matrices of size 1012-by-107 

•  Spherical harmonic transform (SHT) 
•  Synthesize a sky image from its harmonic representation 

•  Computation over rows of a 2D object (summation of spherical harmonics) 
•  Communication to transpose the 2D object 
•  Computation over columns of the 2D object (FFTs) 

Map making, with R. Stompor, M. Szydlarski 
Results obtained on Hopper, Cray XE6, NERSC 

SHT, with R. Stompor, M. Szydlarski 
Simulation on a petascale computer 

Computation 

Communication 

Overall runtime 
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Communication Complexity of  
Dense Linear Algebra 

•  Matrix multiply, using 2n3 flops (sequential or parallel)  
•  Hong-Kung (1981), Irony/Tishkin/Toledo (2004) 
•  Lower bound on Bandwidth = Ω (#flops / M1/2 ) 
•  Lower bound on Latency     = Ω (#flops / M3/2 ) 
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•  Same lower bounds apply to LU using reduction 
•  Demmel, LG, Hoemmen, Langou 2008  

•  And to almost all direct linear algebra [Ballard, Demmel, Holtz, 
Schwartz, 09] 
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2D Parallel algorithms and communication bounds 

Algorithm Minimizing 
 #words (not #messages) 

Minimizing  
#words and #messages 

Cholesky ScaLAPACK  ScaLAPACK 

LU ScaLAPACK 
uses partial pivoting 

 [LG, Demmel, Xiang, 08] 
[Khabou, Demmel, LG, Gu, 12] 

uses tournament pivoting 

QR ScaLAPACK  [Demmel, LG, Hoemmen, Langou, 08]  
uses different representation of Q 

RRQR  ScaLAPACK [Branescu, Demmel, LG, Gu, Xiang 11] 
uses tournament pivoting, 3x flops  

•   Only several references shown, block algorithms (ScaLAPACK) and  
   communication avoiding algorithms 

•   If memory per processor = n2 / P, the lower bounds become 
    #words_moved ≥ Ω ( n2 / P1/2 ),    #messages ≥ Ω ( P1/2 )  
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LU factorization (as in ScaLAPACK pdgetrf) 
LU factorization on a P = Pr x Pc grid of processors 
For ib = 1 to n-1 step b 
     A(ib)	   = A(ib:n, ib:n) 

 (1) Compute panel factorization 
        - find pivot in each column, swap rows 

 (2) Apply all row permutations 
       - broadcast pivot information along the rows 
        - swap rows at left and right 

(3) Compute block row of U  
      - broadcast right diagonal block of L of current panel 

 (4) Update trailing matrix  
       - broadcast right block column of L 
        - broadcast down block row of U 

L	  

U	  

A(ib)	  

L	  

U	  

A(ib+b)	  

L	  

U	  

A(ib)	  

L	  

U	  

A(ib)	  
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TSQR: QR factorization of a tall skinny matrix 
using Householder transformations 

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

R00	  
R10	  
R20	  
R30	  

R01	  

R11	  

R02	  

•   QR decomposition of m x b matrix W,  m >> b 
•  P processors, block row layout 

•   Classic Parallel Algorithm 
•  Compute Householder vector for each column 
•  Number of messages ∝ b log P 

•  Communication Avoiding Algorithm 
•  Reduction operation, with QR as operator 
•  Number of messages ∝ log P 

J. Demmel, LG, M. Hoemmen, J. Langou, 08 
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Parallel TSQR 

QR 
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References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha,  
                    Becker, Patterson, 02  
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Q is represented implicitly as a product  
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Flexibility of TSQR and CAQR algorithms 

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

R00	  
R10	  
R20	  
R30	  

R01	  

R11	  

R02	  Parallel:	  

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

R01	  
R02	  

R00	  

R03	  
Sequen5al:	  

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

R00	  
R01	  

R01	  
R11	  

R02	  

R11	  
R03	  

Dual	  Core:	  

Reduc5on	  tree	  will	  depend	  on	  the	  underlying	  architecture,	  
could	  be	  chosen	  dynamically	  
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Modeled Speedups of CAQR vs ScaLAPACK 

Petascale	  	  
	  	  	  	  	  	  up	  to	  22.9x	  

IBM	  Power	  5	  
	  	  	  	  	  	  up	  to	  9.7x	  

“Grid”	  
	  	  	  	  	  	  up	  to	  11x	  

	  Petascale	  machine	  with	  8192	  procs,	  each	  at	  500	  GFlops/s,	  a	  bandwidth	  of	  4	  GB/s.	  
./102,10,102 9512 wordsss −−− ⋅==⋅= βαγ
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Obvious generalization of TSQR to LU 

•  Block parallel pivoting:  
•  uses a binary tree and is optimal in the parallel case 

•  Block pairwise pivoting:  
•  uses a flat tree and is optimal in the sequential case 
•  introduced by Barron and Swinnerton-Dyer, 1960: block LU factorization used to solve a 

system with 100 equations on EDSAC 2 computer using an auxiliary magnetic-tape 
•  used in PLASMA for multicore architectures and FLAME for out-of-core algorithms and 

for multicore architectures 

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

U00	  
U10	  
U20	  
U30	  

U01	  

U11	  

U02	  

W=	  	  

W0	  
W1	  
W2	  
W3	  

U01	  
U02	  

U00	  

U03	  
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Stability of the LU factorization 
•  The backward stability of the LU factorization of a matrix A of size n-by-n  

      depends on the growth factor 

                                              where aij
k are the values at the k-th step. 

•   gW ≤ 2n-1 , but in practice it is on the order of n2/3 -- n1/2  

•  Two reasons considered to be important for the average case stability [Trefethen and 
Schreiber, 90] : 

     - the multipliers in L are small, 

     - the correction introduced at each elimination step is of rank 1. 
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Block parallel pivoting 

•  Unstable for large number of processors P 

•  When P=number rows, it corresponds to parallel pivoting, known to be unstable 
(Trefethen and Schreiber, 90) 



Page 18 

Tournament pivoting - the overall idea 

•  At each iteration of a block algorithm 

                                   , where 

•  Preprocess W to find at low communication cost good pivots for the LU 
factorization of W, return a permutation matrix P. 

•  Permute the pivots to top, ie compute PA. 
•  Compute LU with no pivoting of W, update trailing matrix. 
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Tournament pivoting 

time 
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Stability of CALU (experimental results)  

Summer School Lecture 4 20 

•  Results show ||PA-LU||/||A||, normwise and componentwise backward 
errors, for random matrices and special ones 

•  See [LG, Demmel, Xiang, 2010] for details 
•  BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU 
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Lightweight scheduling for CALU 
Static scheduling 

time 

Static + 10% dynamic scheduling 

100% dynamic scheduling 

Task dependency graph of CALU 

Donfack, LG, Gropp, Kale, IPDPS 2012 
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Plan 
•  Motivation 

•  Selected past work on reducing communication 

•  Communication complexity of linear algebra operations 

•  Communication avoiding for dense linear algebra  
•  LU, LU_PRRP, QR, Rank Revealing QR factorizations 

•  Often not in ScaLAPACK or LAPACK 

•  Algorithms for multicore processors 

•  Communication avoiding for sparse linear algebra  
•  Iterative methods and preconditioning 

•  Conclusions 
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Communication in Krylov subspace methods  
 Iterative methods to solve Ax =b 

•  Find a solution xk from x0 + Kk (A, r0), where Kk (A, r0) = span {r0, A r0, …, Ak-1 r0} 
such that the Petrov-Galerkin condition b - Axk ⊥ Lk is satisfied. 

•  For numerical stability, an orthonormal basis {q1, q2,…, qk} for Kk (A, r0) is 
computed (CG, GMRES, BiCGstab,…) 

•  Each iteration requires  
•  Sparse matrix vector product 
•  Dot products for the orthogonalization process 

•  S-step Krylov subspace methods  
•  Unroll s iterations, orthogonalize every s steps 

•  Van Rosendale ‘83, Walker ‘85, Chronopoulous and Gear ‘89, Erhel ‘93, Toledo ‘95, Bai, Hu, Reichel 
‘91 (Newton basis), Joubert and Carey ‘92 (Chebyshev basis), etc. 

•  Recent references: G. Atenekeng, B. Philippe, E. Kamgnia (to enable multiplicative Schwarz 
preconditioner), J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yellick (to minimize communication, 
next slide) 
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Minimizing communication in iterative solvers 

•  To minimize communication 
•  Generate a set of s vectors (Ab, A2b, …, Asb) 
•  Orthogonalize the s vectors, check convergence  

However 
•  Important instability problem to address (monomial basis)  
•  CA-preconditioners to further decrease the number of iterations 

Source: M. Hoemmen 

Domain and ghost data to compute Ax, A2 x, …  
on one processor with no communication  

O(log P) messages, optimal 
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Research opportunities and limitations 
Length of the basis “s” is limited by 
•  Size of ghost data 
•  Loss of precision 

Preconditioners: few identified so far to work with s-step methods 
•  Highly decoupled preconditioners: Block Jacobi 
•  Hierarchical, semiseparable matrices (M. Hoemmen, J. Demmel) 

A look at three classes of preconditioners 
•  Incomplete LU factorizations (joint work with S. Moufawad, talk in MS later 

today) 
•  Two level preconditioners in DDM 
•  Deflation techniques through preconditioning 

s-steps Memory Flops 
GMRES O(s n/P) O(s n/P) 

CA-
GMRES 

O(s n/P)+ 
O(s (n/P)2/3)+ 
O(s2 (n/P)1/3) 

O(s n/P)+ 
O(s2 (n/P)2/3)+ 
O(s3 (n/P)1/3) 

Cost for a 3D regular grid, 7 pt stencil 



Page 26 

Compute xi = (LU)-1 A xi-1 using 3 steps: 
1.  Compute f = A xi-1  

2.  Forward substitution: solve Lz = f 
3.  Backward substitution: solve Uxi = z 

ILU0 with nested dissection and ghosting 

Let α0 be the set of equations to be solved by one processor 
For j = 1 to s do 

    Find δj = Adj (G(A), γj)  
    Set αj = δj 
end  

Ghost data required:  
  x(δ), A(γ,δ),  
  L(γ,γ), U(β, β) Find βj = ReachableVertices (G(U), αj-1) 

Find γj = ReachableVertices (G(L), βj) 

5 point stencil on a 2D grid 

⇒  Half of the work  
performed on one processor  
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CA-ILU0 with AMML reordering and ghosting 
•  Reduce volume of ghost data by reordering the vertices using 

Alternating Min-Max Layers (AMML) reordering:  
•  First number the vertices at odd distance from the separators 
•  Then number the vertices at even distance from the separators 

•  CA-ILU0 computes a standard ILU0 factorization  

5 point stencil on a 2D grid 
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Comparison with Block Jacobi 
•  Block Jacobi is another preconditioner which does not require communication 

for one step of an iterative method 
•  Tests for a boundary value problem (provided by Achdou, Nataf), 40x40x40 grid 

Methods tested: 
•  Natural ordering NO+ILU0 
•  CA-ILU0 - kway+AMML(1)+ILU0 
•  Block Jacobi using LU - BJ+ILU0 
•  Block Jacobi using ILU0 - BJ-ILU0 
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Many preconditioners (as ILU) have  
   plateaus in the convergence, often due to  
   the presence of few low eigenvalues 

Direction preserving factorization 
•  Preconditioner M satisfies a filtering property  
       MT = AT or TTM = TTA  
•  Filtering vectors T are chosen to improve the convergence 

Block Filtering (BFD) and Nested Filtering (NFF) Preconditioners 
R. Fezzani, LG, P. Kumar, R. Lacroix, F. Nataf, L. Qu, K. Wang 
•  Algebraic preconditioners based on nested dissection and block/nested factorization 
•  Every Schur complement is approximated to satisfy the filtering property: 

Challenge in getting scalable preconditioners 
Source: Y. Achdou, F. Nataf 

€ 

LikDkk
−1Ukjt = LikFkjUkjt,  e.g. Fkj = Diag Dkk

−1Ukjt( )./ Ukjt( )( )
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•  Pointwise approximate factorization satisfying a row-sum criteria, Dupont, 
Kendall, and Rachford (1968), Gustafsson (1978) 
•  Improves the condition number of the preconditioned matrix for matrices 

arising from finite difference approximation of second order elliptic equations 
•  Nested factorization, Appleyard, Cheshire (1983) 

•  If tTr0 = 0, then at any iteration tTrk = 0, ensures a mass conservation property 
•  Filtering factorization, Wagner, Wittum (1997), Achdou, Nataf (2001) 

•  Direction preserving semiseparable approximation of SPD matrices, Gu, Li, 
Vassilevski (2010) 
•  If the near null-space of the original fine grid matrix is preserved, then view 

the preconditioner as a coarse discretization matrix 
•  Conditioning analysis performed by Napov, components dropped are 

orthogonal to components preserved 
•  Multigrid methods  

•  Bootstrup AMG (Brandt, Brannick, Kahl, and Livshits) 

Preserving directions of interest 
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Results for a boundary value problem  
•  SKY (provided by Achdou, Nataf), discretized on a 225x225x225 grid (11.3 millions 

unknowns) and 400x400x400 grid (64 millions unknowns, 447 millions nonzeros) 

•  Tests use GMRES (PETSc), tolerance = 10-8 
€ 

−div(κ(x)∇u) = f inΩ
u = 0 on∂ΩD

∂u
∂n

= 0 on∂ΩN € 

Ω = 0,1[ ]3,∂ΩN = ∂Ω \∂ΩD

NFF, SKY 400x400x400 SKY 15x15x15 
NFF, SKY 225x225x225 
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Comparison with Restricted Additive Schwarz (RAS)  

Settings:  
•  Curie supercomputer based on Bullx 

system, nodes composed of two 
eight-core Intel Sandy Bridge. 

•  Subdomains solved using Pardiso, 
separators solved using MUMPS. 

•  GMRES and RAS from PETSc. 

NFF vs RAS, SKY 400x400x400 NFF vs RAS, SKY 225x225x225 

Best student paper finalist, Qu, LG, Nataf, SC’13 (talk in MS later today) 

Subdom Iteration Error Iteration Error 

256 5489 5.9e-7 268 2.2e-6 

512 6126 2.7e-6 273 3.2e-6 

1024 7163 1.8e-6 289 2.6e-6 

2048 10000 3.7e-6 317 3.8e-6 

NFF vs RAS, SKY 400x400x400 
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Conclusions 

•  Introduced a new class of communication avoiding algorithms that 
minimize communication 
•  Attain theoretical lower bounds on communication 

•  Minimize communication at the cost of redundant computation 

•  Are often faster than conventional algorithms in practice 

•  Remains a lot to do for sparse linear algebra 
•  Communication bounds, communication optimal algorithms 

•  Numerical stability of s-step methods 

•  Alternatives as block iterative methods, pipelined iterative methods (Vanroose 
et al., talk in MS later today) 

•  Preconditioners - limited by memory and communication, not flops 

•  And BEYOND 
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•  S. Donfack, INRIA, A. Khabou, INRIA, M. Jacquelin, INRIA, L. Qu, Paris 11, F. 
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