
Are we expecting too much from GPUs?

Denis Trystram

Grenoble Institute of Technology
and Institut Universitaire de France

Warszawa – sept. 11, 2013

1/44

Outline

1 Introduction

2 Some basics on scheduling algorithms

3 Scheduling on hybrid systems

4 Concluding remarks

2/44

The GPU wave...

Tianhe-2 and Titan (top of the Top500 ranking) – 4 hybrid
machines in the top10.
HPC platforms include a set of:

Multi-core CPU
Computing accelerators: GPGPU (General Purpose GPU)

Rough analysis

Clear interest for improving the performances of many
algorithms (mostly regular ones).
Take some time to tune the existing algorithms for the
successive generations of platforms. Some implementations
need a complete re-organization of the code.
Hard to extend efficiently to highly irregular problems.
May lead to unexpected bad performances.

3/44

The GPU wave...

Tianhe-2 and Titan (top of the Top500 ranking) – 4 hybrid
machines in the top10.
HPC platforms include a set of:

Multi-core CPU
Computing accelerators: GPGPU (General Purpose GPU)

Rough analysis

Clear interest for improving the performances of many
algorithms (mostly regular ones).
Take some time to tune the existing algorithms for the
successive generations of platforms. Some implementations
need a complete re-organization of the code.
Hard to extend efficiently to highly irregular problems.
May lead to unexpected bad performances.

3/44

The GPU wave...

Tianhe-2 and Titan (top of the Top500 ranking) – 4 hybrid
machines in the top10.
HPC platforms include a set of:

Multi-core CPU
Computing accelerators: GPGPU (General Purpose GPU)

Rough analysis

Clear interest for improving the performances of many
algorithms (mostly regular ones).
Take some time to tune the existing algorithms for the
successive generations of platforms. Some implementations
need a complete re-organization of the code.
Hard to extend efficiently to highly irregular problems.
May lead to unexpected bad performances.

3/44

For the old fellows...

In 1986-87.
I worked on a T40 hypercube with 32 nodes consisting in
Transputers with efficient FPS vector boards. Hard to program.
Thus, for me, programming multi-cores with GPGPU has some
taste of "madeleine cake" (Proust).

Objective of the talk

To share some thoughts on how to deal with accelerators.1

1Warning: reflecting a personal view...
4/44

For the old fellows...

In 1986-87.
I worked on a T40 hypercube with 32 nodes consisting in
Transputers with efficient FPS vector boards. Hard to program.
Thus, for me, programming multi-cores with GPGPU has some
taste of "madeleine cake" (Proust).

Objective of the talk

To share some thoughts on how to deal with accelerators.1

1Warning: reflecting a personal view...
4/44

Resource Management

Informal definition of Scheduling

The scheduling problem is to answer the two following questions
for each of the n tasks of the DAG which represents an application.

Where? – the computing resources executing it
When? – its date of execution

How to design efficient schedulers for hybrid machines (m CPU
cores and k accelerators)?

The tasks assigned to the GPGPU must be carefully chosen.
Need generic methods to do the assignment.
No consensus model:
start with a simplified problem under the classical model
(without communications, no precedence relations, all is
known, ...)

5/44

Resource Management

Informal definition of Scheduling

The scheduling problem is to answer the two following questions
for each of the n tasks of the DAG which represents an application.

Where? – the computing resources executing it
When? – its date of execution

How to design efficient schedulers for hybrid machines (m CPU
cores and k accelerators)?

The tasks assigned to the GPGPU must be carefully chosen.
Need generic methods to do the assignment.
No consensus model:
start with a simplified problem under the classical model
(without communications, no precedence relations, all is
known, ...)

5/44

Content of the talk

Describe and discuss two useful advanced algorithmic techniques:
work stealing and dual approximation.

Positioning

We are looking for low cost methods with performance guaranties
in standard situations.
Then, analyze the limits coming from the management of
heterogeneity.

6/44

Performance guarantee (1/2)

Solution value

The scheduling algorithm A applied on instance I produces a
solution σI with a value v(σI) for the considered objective.

Solution quality

For an instance I , the solution with the best value is denoted by σ∗I .
The quality of the solution is measured by the ratio

v(σI)

v(σ∗I)

7/44

Performance guarantee (2/2)

The performance ratio of algorithm A is defined by

ρ = max∀I
v(σI)

v(σ∗I)

The performances are usually assessed by a worst case analysis

8/44

Worst case versus average case

Advantages of worst case analysis

no hypothesis on the instances
no frequency analysis of the instances (required for any
average case analysis)
relevant if ρ is small
the worst case structures highlights some deficiencies of the
algorithm

9/44

Notations and background

n tasks Ti : processing times pi on CPU and gi on GPGPU
m CPU and k GPGPU
The acceleration factor of a task Ti is the ratio αi =

pi
gi

The completion time of Ti is denoted by Ci

makespan

The optimized objective is the completion time of the last finishing
task (makespan):

Cmax = max
1≤i≤n

Ci

The optimal makespan is denoted by C ∗max .

10/44

Seminal Graham’s results

Recall basics on scheduling on identical machines
Principle:

1 Keep a list of the tasks to be done (sorted by priority)
2 Apply the following rule: start as soon as possible one of

the task of the list on one of the available resources. The
task is one of the ready task starting the earliest (first) with
the highest priority (second).

Execution order of the tasks

The order of the list is not the order of execution. e.g. precedence
constraints or resources constraints change the order.

11/44

Seminal Graham’s results

Recall basics on scheduling on identical machines
Principle:

1 Keep a list of the tasks to be done (sorted by priority)
2 Apply the following rule: start as soon as possible one of

the task of the list on one of the available resources. The
task is one of the ready task starting the earliest (first) with
the highest priority (second).

Execution order of the tasks

The order of the list is not the order of execution. e.g. precedence
constraints or resources constraints change the order.

11/44

recall of basic Graham

m

≤ pmax

Cmax

12/44

Graham precedence constraints

CPU 0

CPU 1

CPU 2

CP ≤ C∗
max

W/m ≤ C∗
max

13/44

Graham: the universal recipe...

Easy to extend with communication delays2.
The Graham’s rules are dynamic and do not need any
information on the ready tasks (not clairvoyant).
Similarly, this principle holds also for rigid parallel tasks
(Graham extension in 1975 with resource constraints).

2well, with a worse ratio for large delays O(logn)...
14/44

1+1≤ 2

As all the previous proofs are based on the same scheme.

1 + 1 The makespan is lower than W
m +CP

time

2 W
m and CP are two lower bounds of C ∗max . Thus, keeping
busy the processors as much as possible is sufficient to
be close to the optimal makespan (at a factor of 2).

15/44

Warning !!!

In the problem of scheduling in hybrid platforms, the execution time
of a task depends on its mapping (CPU or GPU)...

Total work and critical path

For any scheduling σ , two values summarize it well:
the work Wσ = ∑σ(Ti)∈CPU pi +∑σ(Ti)∈GPU gi

the critical path CPσ .

16/44

Coming back on Graham for independent tasks

Partially sorting the tasks in the priority list may improve the
results:
m largest first, in decreasing order ρ = 3/2
2m largest first, in decreasing order ρ = 4/3 3

Looking more carefully...

Graham’s algorithm is optimal for LPT with few tasks (n ≤ 2m−1)
and asymptotically optimal for large number of tasks.

3this leads to the well-known LPT approximation ratio
17/44

Work stealing (dynamic settings)

It is basically the same idea as Graham’s (keeping busy the
processors) but with a distributed implementation4.
Thus, we loose some performance, but the solution is still
bounded...

simulation of 2000 unit tasks on 25 processors. More precisely, the
ratio is additive O(logn)

4see recent analysis of Tchiboukdjian-Gast-Trystram in ANOR
18/44

Work stealing

Obviously, WS holds also with precedence relations.

Three main ideas will help to obtain better performances:

1 One local list per computing resource (low contention,
lock-free dequeue)

2 Most of the overhead of the distributed list management is
done by the idle processors

3 Lazy task creation at steal time (task creation is not free) –
on-line

19/44

Non-uniform work stealing

Work-stealing was used efficiency in distributed parallel computing
and some ideas could also be used for (large) NUMA:

adaptive probability of victim selection. The distance, the
hierarchy of the computer, the number of failed steals
multiple simultaneous steals. Simultaneously doing a long
distance and a close steal.

20/44

Dynamic environments

Handling dynamic task graphs with precedence constraints.
Thus, any practical scheduling algorithm should manage ton-line
DAG. How?

Dynamic task graphs

The future tasks are not known:
all the tasks must be done as efficiently as possible (Work
minimization)
it would be better to execute tasks on the critical path first,
but we do not know the critical path...

21/44

Dynamic environments

Handling dynamic task graphs with precedence constraints.
Thus, any practical scheduling algorithm should manage ton-line
DAG. How?

Dynamic task graphs

The future tasks are not known:
all the tasks must be done as efficiently as possible (Work
minimization)
it would be better to execute tasks on the critical path first,
but we do not know the critical path...

21/44

Dynamic environments

Handling dynamic task graphs with precedence constraints.
Thus, any practical scheduling algorithm should manage ton-line
DAG. How?

Dynamic task graphs

The future tasks are not known:
all the tasks must be done as efficiently as possible (Work
minimization)
it would be better to execute tasks on the critical path first,
but we do not know the critical path...

21/44

Summary

Most scheduling algorithms on identical machines achieve good
performance guarantees for almost free.
Most of the scheduling decisions are taken on independent tasks.

What about hybrid machines?

Let us now study how to achieve similar performances on
heterogeneous systems?

22/44

Summary

Most scheduling algorithms on identical machines achieve good
performance guarantees for almost free.
Most of the scheduling decisions are taken on independent tasks.

What about hybrid machines?

Let us now study how to achieve similar performances on
heterogeneous systems?

22/44

Scheduling on hybrid systems

Description of the Problem.

(Pm,Pk) || Cmax : m identical CPU and k identical GPGPU. n
independent sequential tasks T1, . . . ,Tn.
Tj has two processing times: pj on CPU, gj on GPU.
All the processing times are known.
Objective: minimize the makespan
Complexity: If pj = gj for all tasks
(Pm,P1) || Cmax ⇔ P || Cmax
=⇒ Problem of scheduling with GPU is also NP-hard

23/44

Scheduling on hybrid systems

Description of the Problem.

(Pm,Pk) || Cmax : m identical CPU and k identical GPGPU. n
independent sequential tasks T1, . . . ,Tn.
Tj has two processing times: pj on CPU, gj on GPU.
All the processing times are known.
Objective: minimize the makespan
Complexity: If pj = gj for all tasks
(Pm,P1) || Cmax ⇔ P || Cmax
=⇒ Problem of scheduling with GPU is also NP-hard

23/44

Heterogeneity and list 1

Proposition

(P1,P1) || Cmax : list scheduling algorithm has a ratio larger than
the maximum speedup ratio of a task5.

Instance:

T1 T2
pi (CPU) α 1
gi (GPU) 1 1

5which may be arbitrarily large
24/44

Heterogeneity and list 2

This result still holds for priority like "Largest Acceleration First".

Counter-example:

T1 T2
pi (CPU) 100 100
gi (GPU) 1 1

Any list algorithm schedules this instance with Cmax = 100.
C ∗max = 2

GPU T1

T2CPU

25/44

Heterogeneity and list 3

Contrary to the case of identical machines, keeping the
computing resources busy is not a good idea.
Some computing resources should sometimes stay idle.

Adaptation for WS

A steal may fail even if some tasks are ready.

26/44

HEFT (1/5)

As list algorithm is unbounded, let us consider more sophisticated
methods like HEFT.

Definition (Heterogeneous Earliest Finish Time First)

Compute for all tasks i the following priority :
Ranki = τi +maxj∈succ(i)(Commij +Rankj)
with:

τi = (mpi +kgi)/(m+k) average execution time
Commij average communication cost

A mapping rule: Put the first task on the resource where the it
completes the earliest.

27/44

HEFT (2/5)

Properties

Low complexity
May include an accurate communication and execution
(prediction) model
Take into account precedence constraints (and the critical
path)
Need the full graph to compute the correct rank

28/44

HEFT (3/5)

HEFT priority rule selects the ready tasks according to the
"average" critical path.
HEFT Counter example with independent tasks

HEFT sorts the tasks by average decreasing execution times.
let consider m CPU, k = 1 GPU

T1 . . . Tm
CPU ε . . . ε

GPU m+2 . . . m+2

for i = 0..m−1

Ai1 Bi1 . . . Bim
CPU 1− i/m 1− i/m . . . 1− i/m
GPU 1− i/m 1/m2 . . . 1/m2

29/44

HEFT (4/5)

HEFT schedule

GPU

CPU 0
CPU 1
CPU 2
CPU 3

Optimal schedule

GPU

CPU 0
CPU 1
CPU 2
CPU 3

AB

30/44

HEFT (5/5)

We obtain a approximation ratio in m
2 .

How HEFT could be so wrong?

HEFT executes the top priority tasks with respect to the average
critical path. Some resources will be used less efficiently and thus,
the total work will increase.
To keep the total work low, sorting by the acceleration factor would
be better choice (not for the critical path)...

Open question

Does it lead to a constant approximation ratio?

31/44

HEFT (5/5)

We obtain a approximation ratio in m
2 .

How HEFT could be so wrong?

HEFT executes the top priority tasks with respect to the average
critical path. Some resources will be used less efficiently and thus,
the total work will increase.
To keep the total work low, sorting by the acceleration factor would
be better choice (not for the critical path)...

Open question

Does it lead to a constant approximation ratio?

31/44

Analysis

HEFT does not take into account one major point of the problem

There are only two types of computing resources

CPU and GPU.
If a task is not executed by a GPU, it has to be executed by a
CPU...
This is true also for the optimal solution!

Knapsack

Minimizing the total work is similar to a knapsack problem:
select the best set of tasks executed on the GPU (and thus the
complementary set of tasks executed on the CPU).

But how to choose the knapsack size?

32/44

Dual Approximation 1 [Shmoys,Hochbaum]

Definition (Dual aproximation)

Choose an arbitrary value λ and use it as guess of the optimal
solution.
The algorithm has the following binary output:

ACCEPT:: it provides a schedule with Cmax ≤ ρλ

REJECT :: C ∗max ≥ λ

λ value will guide the structure of the solution

33/44

Dual Approximation 2

How to choose λ?

Using binary search (with ε accuracy) on the value of λ , we get:
a solution with Cmax = ρλ + ε

and C ∗max ≥ λ

Thus the performance guarantee of the solution is ρ + ε .

34/44

Structure of the optimal solution

If λ is the optimal value:
1 All execution times are lower than λ (Critical path)
2 Every computing resource computes at most λ , thus the total

work is lower than (m+k)λ (Work)

35/44

hybrid scheduling and dual approximation

Application with ρ = 2

sort sort the tasks by largest acceleration factors
preloading schedule the tasks constrained to a single type of

resources (pi > λ or gi > λ)
knapsack schedule the GPU with the tasks by decreasing

acceleration factor until the sum of work on GPU is
larger than kλ .
The GPU are filled less than 2λ .

CPU filling schedule all remaining tasks using a list algorithm.
The CPU are filled less than 2λ

36/44

CPU+GPU scheduling and dual approximation

REJECT

∃i ,pi > λ and gi > λ

Total work larger than (m+k)λ
One CPU is filled more than 2λ

Knapsack work is lower than the work of the optimal solution
If λ ≥ C ∗max ,Wσ ≤Wσ∗

37/44

coming back to the HEFT counter-example

for i = 0..m−1

Ai1 Bi1 . . . Bim
CPU 1− i/m 1− i/m . . . 1− i/m
GPU 1− i/m 1/m2 . . . 1/m2

38/44

If λ larger than C ∗max

GPU

λ is a bit too large

CPU 0
CPU 1
CPU 2
CPU 3

39/44

If λ smaller than C ∗max

GPU

CPU 0
CPU 1
CPU 2
CPU 3

λ a bit too small (too much work)

40/44

λ is at the right value

Gdual builds here the optimal solution :-)

GPU

CPU 0
CPU 1
CPU 2
CPU 3

perfect value of λ

41/44

Going further...

It is possible to improve the ratio 2.

Refine the dual approximation technique.
At each step of the dual approximation, solve a dynamic
programming algorithm.
Case k = 1: performance ratio of g = 4

3 in time O
(
n2m2).

Case k ≥ 2 ratio g = 4
3 +

1
3k in time O

(
n2m2k3).

See [Monna, Kedad, Mounie and Trystram’2013] for more details.

42/44

Going further...

It is possible to improve the ratio 2.

Refine the dual approximation technique.
At each step of the dual approximation, solve a dynamic
programming algorithm.
Case k = 1: performance ratio of g = 4

3 in time O
(
n2m2).

Case k ≥ 2 ratio g = 4
3 +

1
3k in time O

(
n2m2k3).

See [Monna, Kedad, Mounie and Trystram’2013] for more details.

42/44

Going further...

It is possible to improve the ratio 2.

Refine the dual approximation technique.
At each step of the dual approximation, solve a dynamic
programming algorithm.
Case k = 1: performance ratio of g = 4

3 in time O
(
n2m2).

Case k ≥ 2 ratio g = 4
3 +

1
3k in time O

(
n2m2k3).

See [Monna, Kedad, Mounie and Trystram’2013] for more details.

42/44

Actual systems are much harder...

The previous dual approximation algorithm was designed and
analyzed for the simplest possible problem.
It has been implemented using WS as a framework (Kaapi runtime).

It has a low complexity and a small performance guarantee.
However, it is almost impossible to extent to any more realistic
features.

precedence relations
communication
memory constraints
...

Moreover, important practical aspects of hybrid scheduling are
missing and they should be taken into account.

43/44

Actual systems are much harder...

The previous dual approximation algorithm was designed and
analyzed for the simplest possible problem.
It has been implemented using WS as a framework (Kaapi runtime).

It has a low complexity and a small performance guarantee.
However, it is almost impossible to extent to any more realistic
features.

precedence relations
communication
memory constraints
...

Moreover, important practical aspects of hybrid scheduling are
missing and they should be taken into account.

43/44

Conclusion

Take home message

Do not consider too sophisticated scheduling policies.
WS allows to face automatically many of the on-line problems
(uncertainties, congestion, ...).
Dual approximation is very powerful, but it requires some a
priori knowledge.
It will be interesting to reconsider alternative models (like
malleable tasks).

Thanks to my many close collaborators, especially Daniel Cordeiro,
Gregory Mounie and Krzysztof Rzadca.

44/44

Conclusion

Take home message

Do not consider too sophisticated scheduling policies.
WS allows to face automatically many of the on-line problems
(uncertainties, congestion, ...).
Dual approximation is very powerful, but it requires some a
priori knowledge.
It will be interesting to reconsider alternative models (like
malleable tasks).

Thanks to my many close collaborators, especially Daniel Cordeiro,
Gregory Mounie and Krzysztof Rzadca.

44/44

	Introduction
	Some basics on scheduling algorithms
	Scheduling on hybrid systems
	Concluding remarks

