
Optimization of data parallel applications for
heterogeneous and hierarchical HPC platforms based on

multicores and multi-GPUs

Alexey Lastovetsky

Heterogeneous Computing Laboratory
University College Dublin, Ireland

Parallel Processing and Applied Mathematics
Warsaw, Poland – September 8-11, 2013

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 1 / 41

Acknowledgment

David Clarke, UCD

Aleksandar Ilic, TU Lisbon

Vladimir Rychkov, UCD

Leonel Sousa, TU Lisbon

Ziming Zhong, UCD

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 2 / 41

Introduction

Introduction
Modern HPC platform =
complex system of highly heterogeneous devices and links
How to execute data parallel applications efficiently?

Traditional heterogeneous clusters: balance the load of relatively
independent processors and optimize communications
Load balancing for data parallel applications = data partitioning
How to apply data partitioning to multicore/multi-GPU?
Compute devices are more tightly coupled (and less independent), as
resources are shared between devices

Hybrid Multicore & Multi-GPU Node Interconnected Hybrid Clusters
Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 3 / 41

Introduction

Introduction
Modern HPC platform =
complex system of highly heterogeneous devices and links
How to execute data parallel applications efficiently?
Traditional heterogeneous clusters: balance the load of relatively
independent processors and optimize communications
Load balancing for data parallel applications = data partitioning

How to apply data partitioning to multicore/multi-GPU?
Compute devices are more tightly coupled (and less independent), as
resources are shared between devices

Hybrid Multicore & Multi-GPU Node Interconnected Hybrid Clusters
Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 3 / 41

Introduction

Introduction
Modern HPC platform =
complex system of highly heterogeneous devices and links
How to execute data parallel applications efficiently?
Traditional heterogeneous clusters: balance the load of relatively
independent processors and optimize communications
Load balancing for data parallel applications = data partitioning
How to apply data partitioning to multicore/multi-GPU?
Compute devices are more tightly coupled (and less independent), as
resources are shared between devices

Hybrid Multicore & Multi-GPU Node Interconnected Hybrid Clusters
Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 3 / 41

Introduction

Introduction

Our target:

Data parallel application

Divisible computational workload
Workload proportional to data size

Dedicated hybrid system

Reuse of optimized software stack

Our approach:

Partitioning devices into independent groups

Each group = abstract processor

May be uni- or multi-processor depending on software kernel

Accurate performance modeling of the abstract processors

Model-based data partitioning between the heterogeneous abstract
processors

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 4 / 41

Introduction

Introduction

Our target:

Data parallel application

Divisible computational workload
Workload proportional to data size

Dedicated hybrid system

Reuse of optimized software stack

Our approach:

Partitioning devices into independent groups

Each group = abstract processor

May be uni- or multi-processor depending on software kernel

Accurate performance modeling of the abstract processors

Model-based data partitioning between the heterogeneous abstract
processors

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 4 / 41

Introduction

Outline

1 Introduction

2 Background

3 Programming Models for Hybrid Systems

4 Performance Modeling on Hybrid Node

5 Applications: Linear Algebra

6 Matrix multiplication on hybrid node

7 Data partitioning on heterogeneous cluster of hybrid nodes

8 Conclusion

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 5 / 41

Background

Data Partitioning on Heterogeneous Platform

Traditionally, performance is defined by a single constant number

- Constant Performance Model (CPM)
- Computed from clock speed or by performing a benchmark
- Computational units are partitioned as di = N × (si/

∑p
j=1 sj)

- Simplistic, algorithms may fail to converge to a balanced solution [1]

Functional Performance Model (FPM):

Represent speed as a function of
problem size [2]

Realistic

Application centric

Hardware specific 0

 20

 40

 60

 80

 100

 120

 140

 0 10000 20000 30000 40000 50000 60000 70000

S
p

e
e

d
 (

G
F

L
O

P
S

)

Problem Size wi (b × b blocks updated)

Performance models for nodes from Grid5000 Grenoble

[1] D. Clarke et al: Dynamic Load Balancing of Parallel Iterative Routines on Platforms with Memory Heterogeneity, 2010
[2] A. Lastovetsky et al: Data partitioning with a functional performance model of heterogeneous processors, 2007.

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 6 / 41

Background

Partitioning with functional performance models*

Load is balanced when:

t1(d1) ≈ t2(d2) ≈ . . . ≈ tp(dp){
ti (di) = di/si (di),

d1 + d2 + . . . + dp = N

Size of the problem

Absolute

speed

s (d)
1

s (d)
2

s (d)
4

s (d)
3

d1 + d2 + d3 + d4 = n

d1 d2 d3 d4

All processors complete work within the same time

Solution lies on a line passing through the origin when di/si (di) = constant

However, only designed for heterogeneous uniprocessor cluster

* A. Lastovetsky et al: Data partitioning with a functional performance model of heterogeneous processors, 2007.

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 7 / 41

Background

FPM-based data partitioning algorithm

Total problem size determines the slope

Algorithm iteratively bisects solution space to find values di

s (d)
1

s (d)
2

s (d)
4

s (d)
3

Size of the problem

Absolute

speed

d + d + d + d = n
1 2 3 4

d1 d2 d3 d4

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 8 / 41

Background

FPM-based data partitioning algorithm

Total problem size determines the slope

Algorithm iteratively bisects solution space to find values di

s (d)
1

s (d)
2

s (d)
4

s (d)
3

Size of the problem

Absolute

speed

L

U

d + d + d + d < n
U1 U2 U3 U4

d + d + d + d > n
L1 L2 L3 L4

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 8 / 41

Background

FPM-based data partitioning algorithm

Total problem size determines the slope

Algorithm iteratively bisects solution space to find values di

s (d)
1

s (d)
2

s (d)
4

s (d)
3

Size of the problem

Absolute

speed

L

U

< n or > n

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 8 / 41

Background

FPM-based data partitioning algorithm

Total problem size determines the slope

Algorithm iteratively bisects solution space to find values di

s (d)
1

s (d)
2

s (d)
4

s (d)
3

Size of the problem

Absolute

speed

U

L

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 8 / 41

Background

FPM-based data partitioning algorithm

Total problem size determines the slope

Algorithm iteratively bisects solution space to find values di

s (d)
1

s (d)
2

s (d)
4

s (d)
3

Size of the problem

Absolute

speed

d1 d2 d3 d4

L

U

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 8 / 41

Background

Dynamic FPM-based data partitioning

Functional Performance Models may be built:

exhaustively in advance

dynamically at run time

Initial: point (n/p, s0i) with speed s0i =
n/p

ti (n/p)
first function approximation s ′i (x) ≡ s0i

Iterations: point (dk
i , s

k
i) with speed ski =

dk
i

ti (dk
i)

approximation s ′i (x) updated by adding
the point

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 9 / 41

Background

Dynamic FPM-based data partitioning

Functional Performance Models may be built:

exhaustively in advance

dynamically at run time

Initial: point (n/p, s0i) with speed s0i =
n/p

ti (n/p)
first function approximation s ′i (x) ≡ s0i

Iterations: point (dk
i , s

k
i) with speed ski =

dk
i

ti (dk
i)

approximation s ′i (x) updated by adding
the point

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 9 / 41

Background

Dynamic FPM-based data partitioning

Functional Performance Models may be built:

exhaustively in advance

dynamically at run time

Initial: point (n/p, s0i) with speed s0i =
n/p

ti (n/p)
first function approximation s ′i (x) ≡ s0i

Iterations: point (dk
i , s

k
i) with speed ski =

dk
i

ti (dk
i)

approximation s ′i (x) updated by adding
the point

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 9 / 41

Background

Dynamic FPM-based data partitioning

Functional Performance Models may be built:

exhaustively in advance

dynamically at run time

Initial: point (n/p, s0i) with speed s0i =
n/p

ti (n/p)
first function approximation s ′i (x) ≡ s0i

Iterations: point (dk
i , s

k
i) with speed ski =

dk
i

ti (dk
i)

approximation s ′i (x) updated by adding
the point

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 9 / 41

Background

Dynamic FPM-based data partitioning

Functional Performance Models may be built:

exhaustively in advance

dynamically at run time

Initial: point (n/p, s0i) with speed s0i =
n/p

ti (n/p)
first function approximation s ′i (x) ≡ s0i

Iterations: point (dk
i , s

k
i) with speed ski =

dk
i

ti (dk
i)

approximation s ′i (x) updated by adding
the point

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 9 / 41

Background

Dynamic FPM-based data partitioning

Functional Performance Models may be built:

exhaustively in advance

dynamically at run time

Initial: point (n/p, s0i) with speed s0i =
n/p

ti (n/p)
first function approximation s ′i (x) ≡ s0i

Iterations: point (dk
i , s

k
i) with speed ski =

dk
i

ti (dk
i)

approximation s ′i (x) updated by adding
the point

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 9 / 41

Background

Dynamic FPM-based data partitioning

Functional Performance Models may be built:

exhaustively in advance

dynamically at run time

Initial: point (n/p, s0i) with speed s0i =
n/p

ti (n/p)
first function approximation s ′i (x) ≡ s0i

Iterations: point (dk
i , s

k
i) with speed ski =

dk
i

ti (dk
i)

approximation s ′i (x) updated by adding
the point

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 9 / 41

Background

Dynamic FPM-based data partitioning

Functional Performance Models may be built:

exhaustively in advance

dynamically at run time

Initial: point (n/p, s0i) with speed s0i =
n/p

ti (n/p)
first function approximation s ′i (x) ≡ s0i

Iterations: point (dk
i , s

k
i) with speed ski =

dk
i

ti (dk
i)

approximation s ′i (x) updated by adding
the point

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 9 / 41

Background

Dynamic FPM-based data partitioning

Functional Performance Models may be built:

exhaustively in advance

dynamically at run time

Initial: point (n/p, s0i) with speed s0i =
n/p

ti (n/p)
first function approximation s ′i (x) ≡ s0i

Iterations: point (dk
i , s

k
i) with speed ski =

dk
i

ti (dk
i)

approximation s ′i (x) updated by adding
the point

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 9 / 41

Background

Dynamic FPM-based data partitioning

Functional Performance Models may be built:

exhaustively in advance

dynamically at run time

Initial: point (n/p, s0i) with speed s0i =
n/p

ti (n/p)
first function approximation s ′i (x) ≡ s0i

Iterations: point (dk
i , s

k
i) with speed ski =

dk
i

ti (dk
i)

approximation s ′i (x) updated by adding
the point

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 9 / 41

Background

Dynamic FPM-based data partitioning

Functional Performance Models may be built:

exhaustively in advance

dynamically at run time

Initial: point (n/p, s0i) with speed s0i =
n/p

ti (n/p)
first function approximation s ′i (x) ≡ s0i

Iterations: point (dk
i , s

k
i) with speed ski =

dk
i

ti (dk
i)

approximation s ′i (x) updated by adding
the point

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 9 / 41

Background

Dynamic FPM-based data partitioning

Functional Performance Models may be built:

exhaustively in advance

dynamically at run time

Initial: point (n/p, s0i) with speed s0i =
n/p

ti (n/p)
first function approximation s ′i (x) ≡ s0i

Iterations: point (dk
i , s

k
i) with speed ski =

dk
i

ti (dk
i)

approximation s ′i (x) updated by adding
the point

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 9 / 41

Background

Dynamic FPM-based data partitioning

Functional Performance Models may be built:

exhaustively in advance

dynamically at run time

Initial: point (n/p, s0i) with speed s0i =
n/p

ti (n/p)
first function approximation s ′i (x) ≡ s0i

Iterations: point (dk
i , s

k
i) with speed ski =

dk
i

ti (dk
i)

approximation s ′i (x) updated by adding
the point

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 9 / 41

Programming Models for Hybrid Systems

Outline

1 Introduction

2 Background

3 Programming Models for Hybrid Systems

4 Performance Modeling on Hybrid Node

5 Applications: Linear Algebra

6 Matrix multiplication on hybrid node

7 Data partitioning on heterogeneous cluster of hybrid nodes

8 Conclusion

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 10 / 41

Programming Models for Hybrid Systems

Programming Models for Hybrid Systems

Data-parallel MPI program with calls to MT and GPGPU kernels

Hierarchical or flat execution on the cluster of hybrid nodes

Partitioning compute devices of the node into independent groups
Identical cores

Running optimized MT kernel
Running multiple single-threaded kernels (one per core)

Core + GPU

Running native GPGPU kernel
Running out-of-core version of native GPGPU kernel

Identical core+GPU pairs

Running multiple native GPGPU kernels

Core + multi-GPU

Running multi-GPU kernel

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 11 / 41

Programming Models for Hybrid Systems

Assumptions about program configuration

No idle compute devices

May not be the optimal configuration (out of scope of this study)
May affect the independence of groups

Even load of identical abstract processors

No evidence that uneven load will improve performance

One-to-one mapping of processes/threads to compute devices

No evidence that many-to-one will improve performance

Same one-to-one mapping for all runs of the program

The mapping is not delegated to the operating environment

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 12 / 41

Programming Models for Hybrid Systems

Performance Measurement on Hybrid Node

3 groups of devices: 6 cores, 5 cores and 1 core + GPU

Cores in one group interfere with each other due to resource contention

All cores in the group execute the same amount of workload in parallel

Kernel computation time and data transfer time are both included

Host core for GPU is chosen to maximize data throughput between GPU
and NUMA memory

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 13 / 41

Performance Modeling on Hybrid Node

Outline

1 Introduction

2 Background

3 Programming Models for Hybrid Systems

4 Performance Modeling on Hybrid Node

5 Applications: Linear Algebra

6 Matrix multiplication on hybrid node

7 Data partitioning on heterogeneous cluster of hybrid nodes

8 Conclusion

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 14 / 41

Performance Modeling on Hybrid Node

Functional Performance Models of multicore

s(x) speed of a core executing a single-threaded kernel exclusively
s(x) = x/t

sc(x) speed of a core that executes a single-threaded kernel and shares
the system resources with identical cores, each core receives x units
sc(x) = x/maxc1 (ti)

Sc(x) speed of c cores that execute a multi-threaded kernel and share
system resources, x units distributed between cores
Sc(x) = x/t

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 15 / 41

Performance Modeling on Hybrid Node

Functional Performance Models of multicore

s(x) speed of a core executing a single-threaded kernel exclusively
s(x) = x/t

sc(x) speed of a core that executes a single-threaded kernel and shares
the system resources with identical cores, each core receives x units
sc(x) = x/maxc1 (ti)

Sc(x) speed of c cores that execute a multi-threaded kernel and share
system resources, x units distributed between cores
Sc(x) = x/t

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 15 / 41

Performance Modeling on Hybrid Node

Functional Performance Models of multicore

s(x) speed of a core executing a single-threaded kernel exclusively
s(x) = x/t

sc(x) speed of a core that executes a single-threaded kernel and shares
the system resources with identical cores, each core receives x units
sc(x) = x/maxc1 (ti)

Sc(x) speed of c cores that execute a multi-threaded kernel and share
system resources, x units distributed between cores
Sc(x) = x/t

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 15 / 41

Performance Modeling on Hybrid Node

Functional Performance Models of multicore: Example

 0

 20

 40

 60

 80

 100

 120

 0 300 600 900 1200

S
p

e
e

d
 (

G
F

lo
p

s
)

Matrix blocks (b x b)

5 cores
6 cores

S5(x): 5-threaded kernel on a socket, 1 core idle

S6(x): 6-threaded kernel on a socket

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 16 / 41

Performance Modeling on Hybrid Node

Functional Performance Models of GPU
g(x): combined speed of a GPU and its dedicated core, exclusive PCIe
g(x) = x/t

gd(x) combined speed of a GPU and its dedicated core, that share
PCIe with identical pairs of processors, each pair receives x
computation units
gd(x) = x/maxd1 (ti)
Gd(x) combined speed of d GPUs and a dedicated CPU core that
execute a multi-GPU kernel and share PCIe, x computation units are
distributed between GPUs
Gd(x) = x/t

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 17 / 41

Performance Modeling on Hybrid Node

Functional Performance Models of GPU
g(x): combined speed of a GPU and its dedicated core, exclusive PCIe
g(x) = x/t
gd(x) combined speed of a GPU and its dedicated core, that share
PCIe with identical pairs of processors, each pair receives x
computation units
gd(x) = x/maxd1 (ti)

Gd(x) combined speed of d GPUs and a dedicated CPU core that
execute a multi-GPU kernel and share PCIe, x computation units are
distributed between GPUs
Gd(x) = x/t

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 17 / 41

Performance Modeling on Hybrid Node

Functional Performance Models of GPU
g(x): combined speed of a GPU and its dedicated core, exclusive PCIe
g(x) = x/t
gd(x) combined speed of a GPU and its dedicated core, that share
PCIe with identical pairs of processors, each pair receives x
computation units
gd(x) = x/maxd1 (ti)
Gd(x) combined speed of d GPUs and a dedicated CPU core that
execute a multi-GPU kernel and share PCIe, x computation units are
distributed between GPUs
Gd(x) = x/t

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 17 / 41

Performance Modeling on Hybrid Node

Functional Performance Models of GPU: Example

 0

 200

 400

 600

 800

 1000

 0 1000 2000 3000 4000

S
p

e
e

d
 (

G
F

lo
p

s
)

Matrix blocks (b x b)

memory limit
version 1
version 2
version 3

g(x) (version 1): naive kernel

g(x) (version 2): accumulate intermediate result + out-of-core

g(x) (version 3): version 2 + overlap data transfers and kernel
executions

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 18 / 41

Performance Modeling on Hybrid Node

Impact of Resource Contention to Performance Modeling

CPU and GPU kernels benchmarked simultaneously on a socket

FPM of multiple cores S5(x) is barely affected

FPM of GPU g(x) gets 85% accuracy (speed drops by 7 - 15%)

S5(x), speed of multiple cores

 0

 20

 40

 60

 80

 100

 0 300 600 900 1200

S
p
e
e
d
 (

G
F

lo
p
s
)

Matrix blocks (b x b)

CPU-only
cores:GPU = 1:5

cores:GPU = 1:10

g(x), speed of a GPU

 0

 200

 400

 600

 800

 1000

 0 1000 2000 3000 4000

S
p
e
e
d
 (

G
F

lo
p
s
)

Matrix blocks (b x b)

GPU-only
cores:GPU = 1:5

cores:GPU = 1:10

Note: the above two figures have different scales, 1:10

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 19 / 41

Performance Modeling on Hybrid Node

Performance Modeling of Hybrid System

Multicore/GPUs are modeled independently

Separate memory, programming models
Represented by speed functions (FPM)
Benchmarking with computational kernels

Performance model of multicore:

Approximate the speed of multiple cores
e.g. all cores in a processor except the
ones dedicated to GPUs

Performance model of GPU:

Approximate combined speed of a GPU
and it’s dedicated core Processing Flow

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 20 / 41

Applications: Linear Algebra

Outline

1 Introduction

2 Background

3 Programming Models for Hybrid Systems

4 Performance Modeling on Hybrid Node

5 Applications: Linear Algebra

6 Matrix multiplication on hybrid node

7 Data partitioning on heterogeneous cluster of hybrid nodes

8 Conclusion

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 21 / 41

Applications: Linear Algebra

Applications: Linear Algebra

Linear Algebra applications:

Matrix multiplication

LU decomposition

Jacobi iterative method

. . .

How to optimally partition matrices?

Partition matrices between nodes

Sub-partition between devices within a node

To achieve load balancing, partition with respect to device and node
speed

Minimise total volume of communication

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 22 / 41

Applications: Linear Algebra

Matrix Partitioning

Simple Partitioning 2D Partitioning

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 23 / 41

Applications: Linear Algebra

Matrix Multiplication on Heterogeneous Platform*

Input: constant processor speeds

Matrices partitioned so that

Area of the rectangle proportional to the speed
Volume of communication minimized

More accurate solution is based on speed functions as input**

* Beaumont, O. et al: Matrix Multiplication on Heterogeneous Platforms. IEEE Trans. Parallel Distrib. Syst. 2001

** Clarke, D. et al: Column-Based Matrix Partitioning for Parallel Matrix Multiplication on Heterogeneous Processors
Based on Functional Performance Models. In: HeteroPar-2011, LNCS 7155, 2012

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 24 / 41

Applications: Linear Algebra

Matrix Multiplication on Heterogeneous Platform*

Input: constant processor speeds

Matrices partitioned so that

Area of the rectangle proportional to the speed
Volume of communication minimized

More accurate solution is based on speed functions as input**

* Beaumont, O. et al: Matrix Multiplication on Heterogeneous Platforms. IEEE Trans. Parallel Distrib. Syst. 2001

** Clarke, D. et al: Column-Based Matrix Partitioning for Parallel Matrix Multiplication on Heterogeneous Processors
Based on Functional Performance Models. In: HeteroPar-2011, LNCS 7155, 2012

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 24 / 41

Applications: Linear Algebra

Matrix Multiplication on Heterogeneous Platform

Computational kernel:
panel-panel update

Processor speed - function
of area
Built by running the kernel
for square matrices

FPM-based partitioning
algorithm finds the optimal
areas
The areas are used as input

to the matrix partitioning

algorithm

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

1:40 1:20 1:1 20:1 40:1

S
p
e
e

d
 (

G
F

L
O

P
S

)

Ratio m:n

Lines connect benchmarks of equal area

5.0⋅10
3

1.0⋅10
4

1.5⋅10
4

2.0⋅10
4

1:1.4 1:1.2 1:1 1.2:1 1.4:1

F
re

q
u
e

n
c
y

Ratio m:n

Size of the problem

Absolute

speed

s (d)
1

s (d)
2

s (d)
4

s (d)
3

d1 + d2 + d3 + d4 = n

d1 d2 d3 d4

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 25 / 41

Applications: Linear Algebra

Matrix Multiplication on Heterogeneous Platform

Computational kernel:
panel-panel update

Processor speed - function
of area
Built by running the kernel
for square matrices

FPM-based partitioning
algorithm finds the optimal
areas
The areas are used as input

to the matrix partitioning

algorithm

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

1:40 1:20 1:1 20:1 40:1
S

p
e
e
d
 (

G
F

L
O

P
S

)
Ratio m:n

Lines connect benchmarks of equal area

5.0⋅10
3

1.0⋅10
4

1.5⋅10
4

2.0⋅10
4

1:1.4 1:1.2 1:1 1.2:1 1.4:1

F
re

q
u
e
n
c
y

Ratio m:n

Size of the problem

Absolute

speed

s (d)
1

s (d)
2

s (d)
4

s (d)
3

d1 + d2 + d3 + d4 = n

d1 d2 d3 d4

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 25 / 41

Applications: Linear Algebra

Matrix Multiplication on Heterogeneous Platform

Computational kernel:
panel-panel update

Processor speed - function
of area
Built by running the kernel
for square matrices

FPM-based partitioning
algorithm finds the optimal
areas
The areas are used as input

to the matrix partitioning

algorithm

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

1:40 1:20 1:1 20:1 40:1
S

p
e
e
d
 (

G
F

L
O

P
S

)
Ratio m:n

Lines connect benchmarks of equal area

5.0⋅10
3

1.0⋅10
4

1.5⋅10
4

2.0⋅10
4

1:1.4 1:1.2 1:1 1.2:1 1.4:1

F
re

q
u
e
n
c
y

Ratio m:n

Size of the problem

Absolute

speed

s (d)
1

s (d)
2

s (d)
4

s (d)
3

d1 + d2 + d3 + d4 = n

d1 d2 d3 d4

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 25 / 41

Matrix multiplication on hybrid node

Outline

1 Introduction

2 Background

3 Programming Models for Hybrid Systems

4 Performance Modeling on Hybrid Node

5 Applications: Linear Algebra

6 Matrix multiplication on hybrid node

7 Data partitioning on heterogeneous cluster of hybrid nodes

8 Conclusion

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 26 / 41

Matrix multiplication on hybrid node

Matrix multiplication on hybrid node

Experimental platform

CPU (AMD) GPUs (NVIDIA)

Architecture Opteron 8439SE GF GTX680 Tesla C870
Core Clock 2.8 GHz 1006 MHz 600 MHz
Number of Cores 4× 6 cores 1536 cores 128 cores
Memory Size 4× 16 GB 2048 MB 1536 MB
Memory Bandwidth 192.3 GB/s 76.8 GB/s

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 27 / 41

Matrix multiplication on hybrid node

Computational Kernels for Hybrid Node

Multicore CPU:

GEMM routine from ACML library
Multi-threaded processes (one per socket)

GPU accelerator:

GEMM routine from CUBLAS library
Develop out-of-core kernel to overcome memory limitation
Overlap data transfers and kernel execution to hide latency

Out-of-core Kernel, Overlap of Data Transfers and Kernel Execution:
- allocated 5 buffers in device memory: A0, A1, B0, C0, C1

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 28 / 41

Matrix multiplication on hybrid node

Experiments on hybrid multicore multi-GPU node

Execution time of the application under different configurations

Matrix size (blks) CPUs (sec) GTX680 (sec) Hybrid-FPM (sec)

40× 40 99.5 74.2 26.6
50× 50 195.4 162.7 77.8
60× 60 300.1 316.8 114.4
70× 70 491.6 554.8 226.1

Column 1: block size is 640× 640
Column 2: 4× 6 CPU cores, homogeneous data partitioning
Column 3: CPU core + GPU
Column 4: 2× 6 CPU cores + 2× 5 CPU cores + 2× (CPU core + GPU),
FPM-based data partitioning

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 29 / 41

Matrix multiplication on hybrid node

Experiments on hybrid multicore multi-GPU node

Execution time of the application under different configurations

Matrix size (blks) CPUs (sec) GTX680 (sec) Hybrid-FPM (sec)

40× 40 99.5 74.2 26.6
50× 50 195.4 162.7 77.8
60× 60 300.1 316.8 114.4
70× 70 491.6 554.8 226.1

Column 1: block size is 640× 640
Column 2: 4× 6 CPU cores, homogeneous data partitioning
Column 3: CPU core + GPU
Column 4: 2× 6 CPU cores + 2× 5 CPU cores + 2× (CPU core + GPU),
FPM-based data partitioning

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 29 / 41

Matrix multiplication on hybrid node

Experiments on hybrid multicore multi-GPU node

Execution time of the application under different configurations

Matrix size (blks) CPUs (sec) GTX680 (sec) Hybrid-FPM (sec)

40× 40 99.5 74.2 26.6
50× 50 195.4 162.7 77.8
60× 60 300.1 316.8 114.4
70× 70 491.6 554.8 226.1

Column 1: block size is 640× 640
Column 2: 4× 6 CPU cores, homogeneous data partitioning
Column 3: CPU core + GPU
Column 4: 2× 6 CPU cores + 2× 5 CPU cores + 2× (CPU core + GPU),
FPM-based data partitioning

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 29 / 41

Matrix multiplication on hybrid node

Experiments on hybrid multicore multi-GPU node

Execution time of the application under different configurations

Matrix size (blks) CPUs (sec) GTX680 (sec) Hybrid-FPM (sec)

40× 40 99.5 74.2 26.6
50× 50 195.4 162.7 77.8
60× 60 300.1 316.8 114.4
70× 70 491.6 554.8 226.1

Column 1: block size is 640× 640
Column 2: 4× 6 CPU cores, homogeneous data partitioning
Column 3: CPU core + GPU
Column 4: 2× 6 CPU cores + 2× 5 CPU cores + 2× (CPU core + GPU),
FPM-based data partitioning

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 29 / 41

Matrix multiplication on hybrid node

Computation time of each process

 0
 20
 40
 60
 80

 100
 120
 140

 0 2 4 6 8 10 12 14 16 18 20 22 24C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

Process rank

CPM-based partitioning

Tesla C870

Geforce GTX 680

 0
 20
 40
 60
 80

 100
 120
 140

 0 2 4 6 8 10 12 14 16 18 20 22 24C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

Process rank

FPM-based partitioning

Matrix size 60× 60, Computation time reduced by 40%
Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 30 / 41

Matrix multiplication on hybrid node

Performance with different partitionings

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 20 30 40 50 60 70 80

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Matrix size n

Homogeneous Partitioning
CPM-based Partitioning
FPM-based Partitioning

Execution time reduced by 23% and 45% respectively
Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 31 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

Outline

1 Introduction

2 Background

3 Programming Models for Hybrid Systems

4 Performance Modeling on Hybrid Node

5 Applications: Linear Algebra

6 Matrix multiplication on hybrid node

7 Data partitioning on heterogeneous cluster of hybrid nodes

8 Conclusion

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 32 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

Data partitioning on heterogeneous cluster of hybrid nodes

Target platform - dedicated heterogeneous cluster of hybrid nodes

Hierarchical partitioning algorithm

Dynamic algorithm - no a priori information about performance
required.
Inputs:

Problem size
Number of nodes
Number of devices per node
Device type (eg. cpu, gpu, . . .).

Link computational kernel to be benchmarked for each device.

Initially distribution is partitioned evenly between nodes and between
devices within a node
Algorithm converges towards optimum solution

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 33 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

Hierarchical Partitioning Algorithm

q nodes, Q1, . . . ,Qq.

node Qi has pi devices, Pi1, . . . ,Pipi

Hierarchy in platform → hierarchy in partitioning
Nested parallelism
inter-node partitioning algorithm (INPA)
inter-device partitioning algorithm (IDPA)
IDPA is nested inside INPA

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 34 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

Hierarchical Partitioning Algorithm

W computational units to partition between nodes

inter-node partitioning algorithm (INPA) creates node-FPM’s
and computes w1, . . . ,wq

so that w1 + . . . + wq = W .

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 35 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

Hierarchical Partitioning Algorithm

Communication minimising algorithm has input: w1, . . . ,wq and
output: (m1, n1), . . . , (mq, nq) such that mi × ni = wi

and matrix is completely tiled.

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 35 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

Hierarchical Partitioning Algorithm

inter-device partitioning algorithm (IDPA) creates device-FPM’s
and computes di1, . . . , dip,
such that di1 + . . . + dip = bni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 35 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

Hierarchical Partitioning Algorithm

inter-device partitioning algorithm (IDPA) creates device-FPM’s
and computes di1, . . . , dip,
such that di1 + . . . + dip = bni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 35 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 36 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

Experimental Setup

90 Nodes from Grid5000 Grenoble site

Cores: 0 1 2 3 4 5 6 7 8 Nodes Cores GPUs Hardware

Adonis 2 1 1 1 1 1 2 3 0 12 48 12 2.27/2.4GHz Xeon, 24GB
Edel 0 6 4 4 4 8 8 8 8 50 250 0 2.27GHz Xeon, 24GB
Genepi 0 3 3 3 3 4 4 4 4 28 134 0 2.5GHz Xeon, 8GB

Total 90 432 12

All nodes connected with InfiniBand communication network.

High performance BLAS libraries: Intel MKL for CPU, CUBLAS for
GPU devices.

Open MPI for inter node communication.

OpenMP for inter-device parallelism.

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 37 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

Experimental Results

 0

 20

 40

 60

 80

 100

 120

 140

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

S
p
e
e
d
 (

G
F

L
O

P
S

)

Problem Size wi (128 × 128 blocks updated)

Performance models for nodes from Grid5000 Grenoble

adonis 7CPU + 1GPU
adonis 1CPU + 1GPU
adonis 0CPU + 1GPU

genepi 8CPU
genepi 4CPU
genepi 1CPU

edel 8CPU
edel 4CPU
edel 1CPU

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 38 / 41

Data partitioning on heterogeneous cluster of hybrid nodes

Experimental Results

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140 160

S
p

e
e

d
 (

te
ra

F
L
O

P
S

)

Matrix size N (× 10
3
)

Total Matrix Multiplication Speed

FPM Partitioning
Multiple-CPM Partitioning

Single-CPM Partitioning
Homogeneous Partitioning

Functional performance model (FPM): the proposed algorithm

Multiple constant performance models (CPM): Redistribute based on
previous benchmark.

Single-CPM: One benchmark is preformed.

Homogeneous distribution: Partitioned evenly between nodes, then evenly
between devices within each node.

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 39 / 41

Conclusion

Conclusion

Defined and built functional performance models (FPMs) of hybrid
multicore and multi-GPU system, considering it as a distributed
memory system

Adapted FPM-based data partitioning to hybrid node, achieved load
balancing and delivered good performance

Adapted dynamic FPM-based data partitioning to hybrid cluster,
achieved self-adaptiveness

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 40 / 41

Conclusion

Thank You!

University College Heterogeneous Computing Science Foundation China Scholarship
Dublin Laboratory Ireland Council

Instituto de Engenharia Instituto Superior Tecnico Complex HPC
de Sistemas e Computadores Universidade de Lisboa EU COST Action IC0805

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 41 / 41

	Introduction
	Background
	Programming Models for Hybrid Systems
	Performance Modeling on Hybrid Node
	Applications: Linear Algebra
	Matrix multiplication on hybrid node
	Data partitioning on heterogeneous cluster of hybrid nodes
	Conclusion

