Optimization of data parallel applications for heterogeneous and hierarchical HPC platforms based on multicores and multi-GPUs

Alexey Lastovetsky

Heterogeneous Computing Laboratory University College Dublin, Ireland

Parallel Processing and Applied Mathematics Warsaw, Poland – September 8-11, 2013

1/41

Acknowledgment

- David Clarke, UCD
- Aleksandar Ilic, TU Lisbon
- Vladimir Rychkov, UCD
- Leonel Sousa, TU Lisbon
- Ziming Zhong, UCD

• Modern HPC platform =

complex system of highly heterogeneous devices and links

Introduction

• How to execute data parallel applications efficiently?

- Modern HPC platform = complex system of highly heterogeneous devices and links
- How to execute data parallel applications efficiently?

Introduction

- Traditional heterogeneous clusters: balance the load of relatively independent processors and optimize communications
- Load balancing for data parallel applications = data partitioning

• Modern HPC platform =

complex system of highly heterogeneous devices and links

Introduction

- How to execute data parallel applications efficiently?
- Traditional heterogeneous clusters: balance the load of relatively independent processors and optimize communications
- Load balancing for data parallel applications = data partitioning
- How to apply data partitioning to multicore/multi-GPU? Compute devices are more tightly coupled (and less independent), as resources are shared between devices

Introduction

Our target:

- Data parallel application
 - Divisible computational workload
 - Workload proportional to data size
- Dedicated hybrid system
- Reuse of optimized software stack

Introduction

Our target:

- Data parallel application
 - Divisible computational workload
 - Workload proportional to data size
- Dedicated hybrid system
- Reuse of optimized software stack

Our approach:

- Partitioning devices into independent groups
 - $\bullet \ {\sf Each \ group} = {\sf abstract \ processor}$
 - May be uni- or multi-processor depending on software kernel
- Accurate performance modeling of the abstract processors
- Model-based data partitioning between the heterogeneous abstract processors

Outline

- Introduction
- Background
- Programming Models for Hybrid Systems
- Performance Modeling on Hybrid Node
- 5 Applications: Linear Algebra
- 6 Matrix multiplication on hybrid node
 - Data partitioning on heterogeneous cluster of hybrid nodes

Introduction

Conclusion

Data Partitioning on Heterogeneous Platform

Traditionally, performance is defined by a single constant number

Background

- Constant Performance Model (CPM)
- Computed from clock speed or by performing a benchmark
- Computational units are partitioned as $d_i = N \times (s_i / \sum_{j=1}^p s_j)$
- Simplistic, algorithms may fail to converge to a balanced solution [1]

Functional Performance Model (FPM):

- Represent speed as a function of problem size [2]
- Realistic
- Application centric
- Hardware specific

D. Clarke et al: Dynamic Load Balancing of Parallel Iterative Routines on Platforms with Memory Heterogeneity, 2010
A. Lastovetsky et al: Data partitioning with a functional performance model of heterogeneous processors, 2007.

Partitioning with functional performance models*

Background

- All processors complete work within the same time
- Solution lies on a line passing through the origin when $d_i/s_i(d_i) = constant$
- However, only designed for heterogeneous uniprocessor cluster
- * A. Lastovetsky et al: Data partitioning with a functional performance model of heterogeneous processors, 2007.

- Total problem size determines the slope
- Algorithm iteratively bisects solution space to find values d_i

Background

- Total problem size determines the slope
- Algorithm iteratively bisects solution space to find values d_i

Background

Size of the problem

- Total problem size determines the slope
- Algorithm iteratively bisects solution space to find values d_i

Background

Size of the problem

- Total problem size determines the slope
- Algorithm iteratively bisects solution space to find values d_i

Background

Size of the problem

- Total problem size determines the slope
- Algorithm iteratively bisects solution space to find values d_i

Background

Background

Functional Performance Models may be built:

- exhaustively in advance
- dynamically at run time

Functional Performance Models may be built:

- exhaustively in advance
- dynamically at run time

Background

Functional Performance Models may be built:

- exhaustively in advance
- dynamically at run time

Initial: point $(n/p, s_i^0)$ with speed $s_i^0 = \frac{n/p}{t_i(n/p)}$ first function approximation $s_i'(x) \equiv s_i^0$

Background

Functional Performance Models may be built:

- exhaustively in advance
- dynamically at run time

Initial: point $(n/p, s_i^0)$ with speed $s_i^0 = \frac{n/p}{t_i(n/p)}$ first function approximation $s_i'(x) \equiv s_i^0$

Background

Functional Performance Models may be built:

- exhaustively in advance
- dynamically at run time

Background

Functional Performance Models may be built:

- exhaustively in advance
- dynamically at run time

Background

Functional Performance Models may be built:

- exhaustively in advance
- dynamically at run time

Background

Functional Performance Models may be built:

- exhaustively in advance
- dynamically at run time

Background

Functional Performance Models may be built:

- exhaustively in advance
- dynamically at run time

Background

Functional Performance Models may be built:

- exhaustively in advance
- dynamically at run time

Background

Functional Performance Models may be built:

- exhaustively in advance
- dynamically at run time

Background

Functional Performance Models may be built:

- exhaustively in advance
- dynamically at run time

Background

Functional Performance Models may be built:

- exhaustively in advance
- dynamically at run time

Outline

- Introduction
- 2 Background

Programming Models for Hybrid Systems

- Performance Modeling on Hybrid Node
- 5 Applications: Linear Algebra
- 6 Matrix multiplication on hybrid node
- 7 Data partitioning on heterogeneous cluster of hybrid nodes
- B) Conclusion

Programming Models for Hybrid Systems

- Data-parallel MPI program with calls to MT and GPGPU kernels
 - Hierarchical or flat execution on the cluster of hybrid nodes
- Partitioning compute devices of the node into independent groups
 - Identical cores
 - Running optimized MT kernel
 - Running multiple single-threaded kernels (one per core)
 - Core + GPU
 - Running native GPGPU kernel
 - Running out-of-core version of native GPGPU kernel
 - Identical core+GPU pairs
 - Running multiple native GPGPU kernels
 - Core + multi-GPU
 - Running multi-GPU kernel

Assumptions about program configuration

- No idle compute devices
 - May not be the optimal configuration (out of scope of this study)
 - May affect the independence of groups
- Even load of identical abstract processors
 - No evidence that uneven load will improve performance
- One-to-one mapping of processes/threads to compute devices
 - No evidence that many-to-one will improve performance
- Same one-to-one mapping for all runs of the program
 - The mapping is not delegated to the operating environment

Programming Models for Hybrid Systems

Performance Measurement on Hybrid Node

- 3 groups of devices: 6 cores, 5 cores and 1 core + GPU
- Cores in one group interfere with each other due to resource contention
- All cores in the group execute the same amount of workload in parallel
- Kernel computation time and data transfer time are both included
- Host core for GPU is chosen to maximize data throughput between GPU and NUMA memory

Outline

- Introduction
- 2 Background
 - Programming Models for Hybrid Systems
- Performance Modeling on Hybrid Node
 - 5 Applications: Linear Algebra
 - Matrix multiplication on hybrid node
- 7 Data partitioning on heterogeneous cluster of hybrid nodes
- B Conclusion

 Performance Modeling on Hybrid Node

Functional Performance Models of multicore

• s(x) speed of a core executing a single-threaded kernel exclusively s(x) = x/t

Functional Performance Models of multicore

- s(x) speed of a core executing a single-threaded kernel exclusively s(x) = x/t
- $s_c(x)$ speed of a core that executes a single-threaded kernel and shares the system resources with identical cores, each core receives x units $s_c(x) = x/max_1^c(t_i)$

Functional Performance Models of multicore

- s(x) speed of a core executing a single-threaded kernel exclusively s(x) = x/t
- $s_c(x)$ speed of a core that executes a single-threaded kernel and shares the system resources with identical cores, each core receives x units $s_c(x) = x/max_1^c(t_i)$
- $S_c(x)$ speed of c cores that execute a multi-threaded kernel and share system resources, x units distributed between cores $S_c(x) = x/t$

Functional Performance Models of multicore: Example

S₅(x): 5-threaded kernel on a socket, 1 core idle
S₆(x): 6-threaded kernel on a socket

Functional Performance Models of GPU

g(x): combined speed of a GPU and its dedicated core, exclusive PCIe
 g(x) = x/t

Functional Performance Models of GPU

- g(x): combined speed of a GPU and its dedicated core, exclusive PCIe
 g(x) = x/t
- $g_d(x)$ combined speed of a GPU and its dedicated core, that share PCIe with identical pairs of processors, each pair receives x computation units

 $g_d(x) = x/max_1^d(t_i)$

Functional Performance Models of GPU

- g(x): combined speed of a GPU and its dedicated core, exclusive PCIe
 g(x) = x/t
- $g_d(x)$ combined speed of a GPU and its dedicated core, that share PCIe with identical pairs of processors, each pair receives x computation units

 $g_d(x) = x/max_1^d(t_i)$

• $G_d(x)$ combined speed of d GPUs and a dedicated CPU core that execute a multi-GPU kernel and share PCIe, x computation units are distributed between GPUs

$$G_d(x) = x/t$$

Functional Performance Models of GPU: Example

- g(x) (version 1): naive kernel
- g(x) (version 2): accumulate intermediate result + out-of-core
- g(x) (version 3): version 2 + overlap data transfers and kernel executions

Impact of Resource Contention to Performance Modeling

- CPU and GPU kernels benchmarked simultaneously on a socket
- FPM of multiple cores $S_5(x)$ is barely affected
- FPM of GPU g(x) gets 85% accuracy (speed drops by 7 15%)

Performance Modeling of Hybrid System

• Multicore/GPUs are modeled independently

- Separate memory, programming models
- Represented by speed functions (FPM)
- Benchmarking with computational kernels
- Performance model of multicore:
 - Approximate the speed of multiple cores
 - e.g. all cores in a processor except the ones dedicated to GPUs
- Performance model of GPU:
 - Approximate combined speed of a GPU and it's dedicated core

Applications: Linear Algebra

Outline

- Introduction
- 2 Background
- Programming Models for Hybrid Systems
- 4 Performance Modeling on Hybrid Node
- 5 Applications: Linear Algebra
- Matrix multiplication on hybrid node
- Data partitioning on heterogeneous cluster of hybrid nodes

3 Conclusion

Applications: Linear Algebra

Linear Algebra applications:

- Matrix multiplication
- LU decomposition
- Jacobi iterative method

• . . .

How to optimally partition matrices?

- Partition matrices between nodes
- Sub-partition between devices within a node

Applications: Linear Algebra

- To achieve load balancing, partition with respect to device and node speed
- Minimise total volume of communication

Matrix Partitioning

Simple Partitioning

Applications: Linear Algebra

2D Partitioning

Internet internet for the force of the

Matrix Multiplication on Heterogeneous Platform*

Applications: Linear Algebra

- Input: constant processor speeds
- Matrices partitioned so that
 - Area of the rectangle proportional to the speed
 - Volume of communication minimized

* Beaumont, O. et al: Matrix Multiplication on Heterogeneous Platforms. IEEE Trans. Parallel Distrib. Syst. 2001

Matrix Multiplication on Heterogeneous Platform*

Applications: Linear Algebra

- Input: constant processor speeds
- Matrices partitioned so that
 - Area of the rectangle proportional to the speed
 - Volume of communication minimized

More accurate solution is based on speed functions as input**

- * Beaumont, O. et al: Matrix Multiplication on Heterogeneous Platforms. IEEE Trans. Parallel Distrib. Syst. 2001
- ** Clarke, D. et al: Column-Based Matrix Partitioning for Parallel Matrix Multiplication on Heterogeneous Processors Based on Functional Performance Models. In: HeteroPar-2011, LNCS 7155, 2012

Matrix Multiplication on Heterogeneous Platform

Applications: Linear Algebra

• Computational kernel: panel-panel update

Matrix Multiplication on Heterogeneous Platform

Applications: Linear Algebra

• Computational kernel: panel-panel update

• Processor speed - function of area Built by running the kernel for square matrices

Matrix Multiplication on Heterogeneous Platform

Applications: Linear Algebra

• Computational kernel: panel-panel update $m_i \ge b$ $n_i \ge b$ $h_i \ge b$ $h_i \ge b$

- Processor speed function of area Built by running the kernel for square matrices
- FPM-based partitioning algorithm finds the optimal areas

The areas are used as input to the matrix partitioning algorithm

Outline

- Introduction
- 2 Background
- Programming Models for Hybrid Systems
- 4 Performance Modeling on Hybrid Node
- 5 Applications: Linear Algebra
- 6 Matrix multiplication on hybrid node
 - Data partitioning on heterogeneous cluster of hybrid nodes

3 Conclusion

 Matrix multiplication on hybrid node

Matrix multiplication on hybrid node

Experimental platform

	CPU (AMD)	GPUs (N	IVIDIA)
Architecture	Opteron 8439SE	GF GTX680	Tesla C870
Core Clock	2.8 GHz	1006 MHz	600 MHz
Number of Cores	4×6 cores	1536 cores	128 cores
Memory Size	$4 imes16~{ extsf{GB}}$	2048 MB	1536 MB
Memory Bandwidth		192.3 GB/s	76.8 GB/s

Computational Kernels for Hybrid Node

- Multicore CPU:
 - GEMM routine from ACML library
 - Multi-threaded processes (one per socket)
- GPU accelerator:
 - GEMM routine from CUBLAS library
 - Develop out-of-core kernel to overcome memory limitation
 - Overlap data transfers and kernel execution to hide latency

Out-of-core Kernel, Overlap of Data Transfers and Kernel Execution:

- allocated 5 buffers in device memory: A0, A1, B0, C0, C1

Execution time of the application under different configurations

Matrix size (blks)	CPUs (sec)	GTX680 (sec)	Hybrid-FPM (sec)
40 imes 40	99.5	74.2	26.6
50 imes 50	195.4	162.7	77.8
60 imes 60	300.1	316.8	114.4
70 imes 70	491.6	554.8	226.1

Execution time of the application under different configurations

Matrix size (blks)	CPUs (sec)	GTX680 (sec)	Hybrid-FPM (sec)
40 imes 40	99.5	74.2	26.6
50 imes 50	195.4	162.7	77.8
60 imes 60	300.1	316.8	114.4
70 imes 70	491.6	554.8	226.1

Execution time of the application under different configurations

Matrix size (blks)	CPUs (sec)	GTX680 (sec)	Hybrid-FPM (sec)
40 imes 40	99.5	74.2	26.6
50 imes 50	195.4	162.7	77.8
60 imes 60	300.1	316.8	114.4
70 imes 70	491.6	554.8	226.1

Execution time of the application under different configurations

Matrix size (blks)	CPUs (sec)	GTX680 (sec)	Hybrid-FPM (sec)
40 imes 40	99.5	74.2	26.6
50 imes 50	195.4	162.7	77.8
60 imes 60	300.1	316.8	114.4
70 imes 70	491.6	554.8	226.1

Matrix multiplication on hybrid node

Computation time of each process

Matrix size 60 \times 60, Computation time reduced by 40%

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU

Matrix multiplication on hybrid node

Performance with different partitionings

Execution time reduced by 23% and 45% respectively

Outline

- Introduction
- 2 Background
- Programming Models for Hybrid Systems
- Performance Modeling on Hybrid Node
- 5 Applications: Linear Algebra
- Matrix multiplication on hybrid node
- Data partitioning on heterogeneous cluster of hybrid nodes

Conclusion

Indiana and a factor of the second

- Target platform dedicated heterogeneous cluster of hybrid nodes
- Hierarchical partitioning algorithm
 - Dynamic algorithm no a priori information about performance required.
 - Inputs:
 - Problem size
 - Number of nodes
 - Number of devices per node
 - Device type (eg. cpu, gpu, ...).
 - Link computational kernel to be benchmarked for each device.
 - Initially distribution is partitioned evenly between nodes and between devices within a node
 - Algorithm converges towards optimum solution

Hierarchical Partitioning Algorithm

- q nodes, Q_1, \ldots, Q_q .
- node Q_i has p_i devices, P_{i1}, \ldots, P_{ip_i}
- $\bullet\,$ Hierarchy in platform $\rightarrow\,$ hierarchy in partitioning
 - Nested parallelism
 - inter-node partitioning algorithm (INPA)
 - inter-device partitioning algorithm (IDPA)
 - IDPA is nested inside INPA

Hierarchical Partitioning Algorithm

- W computational units to partition between nodes
- inter-node partitioning algorithm (INPA) creates node-FPM's and computes w₁,..., w_q so that w₁ + ... + w_q = W.

Hierarchical Partitioning Algorithm

q nodes

• Communication minimising algorithm has input: w_1, \ldots, w_q and output: $(m_1, n_1), \ldots, (m_q, n_q)$ such that $m_i \times n_i = w_i$ and matrix is completely tiled.

Hierarchical Partitioning Algorithm

inter-device partitioning algorithm (IDPA) creates device-FPM's and computes d_{i1},..., d_{ip}, such that d_{i1} + ... + d_{ip} = bn_i

Hierarchical Partitioning Algorithm

inter-device partitioning algorithm (IDPA) creates device-FPM's and computes d_{i1},..., d_{ip}, such that d_{i1} + ... + d_{ip} = bn_i

$$\sum_{j=1}^{p} d_{ij} = b \times n_{j}$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

Experimental Setup

Cores:	0	1	2	3	4	5	6	7	8	Nodes	Cores	GPUs	Hardware
Adonis	2	1	1	1	1	1	2	3	0	12	48	12	2.27/2.4GHz Xeon, 24GB
Edel	0	6	4	4	4	8	8	8	8	50	250	0	2.27GHz Xeon, 24GB
Genepi	0	3	3	3	3	4	4	4	4	28	134	0	2.5GHz Xeon, 8GB
Total										90	432	12	

90 Nodes from Grid5000 Grenoble site

- All nodes connected with InfiniBand communication network.
- High performance BLAS libraries: Intel MKL for CPU, CUBLAS for GPU devices.
- Open MPI for inter node communication.
- OpenMP for inter-device parallelism.

Data partitioning on heterogeneous cluster of hybrid nodes

Experimental Results

Data partitioning on heterogeneous cluster of hybrid nodes

Experimental Results

Total Matrix Multiplication Speed

- Functional performance model (FPM): the proposed algorithm
- Multiple constant performance models (CPM): Redistribute based on previous benchmark.
- Single-CPM: One benchmark is preformed.
- Homogeneous distribution: Partitioned evenly between nodes, then evenly between devices within each node.

Conclusion

 Defined and built functional performance models (FPMs) of hybrid multicore and multi-GPU system, considering it as a distributed memory system

Conclusion

- Adapted FPM-based data partitioning to hybrid node, achieved load balancing and delivered good performance
- Adapted dynamic FPM-based data partitioning to hybrid cluster, achieved self-adaptiveness

Thank You!

University College Dublin Heterogeneous Computing Laboratory Science Foundation Ireland China Scholarship Council

Instituto de Engenharia de Sistemas e Computadores

Instituto Superior Tecnico Universidade de Lisboa

CCOSE

Complex HPC EU COST Action IC0805