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Introduction

Introduction
Modern HPC platform =
complex system of highly heterogeneous devices and links
How to execute data parallel applications efficiently?

Traditional heterogeneous clusters: balance the load of relatively
independent processors and optimize communications
Load balancing for data parallel applications = data partitioning
How to apply data partitioning to multicore/multi-GPU?
Compute devices are more tightly coupled (and less independent), as
resources are shared between devices

Hybrid Multicore & Multi-GPU Node Interconnected Hybrid Clusters
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Introduction

Introduction

Our target:

Data parallel application

Divisible computational workload
Workload proportional to data size

Dedicated hybrid system

Reuse of optimized software stack

Our approach:

Partitioning devices into independent groups

Each group = abstract processor

May be uni- or multi-processor depending on software kernel

Accurate performance modeling of the abstract processors

Model-based data partitioning between the heterogeneous abstract
processors
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Introduction

Outline

1 Introduction

2 Background

3 Programming Models for Hybrid Systems

4 Performance Modeling on Hybrid Node

5 Applications: Linear Algebra

6 Matrix multiplication on hybrid node

7 Data partitioning on heterogeneous cluster of hybrid nodes
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Background

Data Partitioning on Heterogeneous Platform

Traditionally, performance is defined by a single constant number

- Constant Performance Model (CPM)
- Computed from clock speed or by performing a benchmark
- Computational units are partitioned as di = N × (si/

∑p
j=1 sj)

- Simplistic, algorithms may fail to converge to a balanced solution [1]

Functional Performance Model (FPM):

Represent speed as a function of
problem size [2]
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Performance models for nodes from Grid5000 Grenoble

[1] D. Clarke et al: Dynamic Load Balancing of Parallel Iterative Routines on Platforms with Memory Heterogeneity, 2010
[2] A. Lastovetsky et al: Data partitioning with a functional performance model of heterogeneous processors, 2007.
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Background

Partitioning with functional performance models*

Load is balanced when:

t1(d1) ≈ t2(d2) ≈ . . . ≈ tp(dp){
ti (di ) = di/si (di ),

d1 + d2 + . . . + dp = N

Size of the problem

Absolute

speed

s (d)
1

s (d)
2

s (d)
4

s (d)
3

d1 + d2 + d3 + d4 = n

d1 d2 d3 d4

All processors complete work within the same time

Solution lies on a line passing through the origin when di/si (di ) = constant

However, only designed for heterogeneous uniprocessor cluster

* A. Lastovetsky et al: Data partitioning with a functional performance model of heterogeneous processors, 2007.
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Background

FPM-based data partitioning algorithm

Total problem size determines the slope

Algorithm iteratively bisects solution space to find values di
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Background

Dynamic FPM-based data partitioning

Functional Performance Models may be built:

exhaustively in advance

dynamically at run time

Initial: point (n/p, s0i ) with speed s0i =
n/p

ti (n/p)
first function approximation s ′i (x) ≡ s0i

Iterations: point (dk
i , s

k
i ) with speed ski =

dk
i

ti (dk
i )

approximation s ′i (x) updated by adding
the point
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Programming Models for Hybrid Systems
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Programming Models for Hybrid Systems

Programming Models for Hybrid Systems

Data-parallel MPI program with calls to MT and GPGPU kernels

Hierarchical or flat execution on the cluster of hybrid nodes

Partitioning compute devices of the node into independent groups
Identical cores

Running optimized MT kernel
Running multiple single-threaded kernels (one per core)

Core + GPU

Running native GPGPU kernel
Running out-of-core version of native GPGPU kernel

Identical core+GPU pairs

Running multiple native GPGPU kernels

Core + multi-GPU

Running multi-GPU kernel
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Programming Models for Hybrid Systems

Assumptions about program configuration

No idle compute devices

May not be the optimal configuration (out of scope of this study)
May affect the independence of groups

Even load of identical abstract processors

No evidence that uneven load will improve performance

One-to-one mapping of processes/threads to compute devices

No evidence that many-to-one will improve performance

Same one-to-one mapping for all runs of the program

The mapping is not delegated to the operating environment
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Programming Models for Hybrid Systems

Performance Measurement on Hybrid Node

3 groups of devices: 6 cores, 5 cores and 1 core + GPU

Cores in one group interfere with each other due to resource contention

All cores in the group execute the same amount of workload in parallel

Kernel computation time and data transfer time are both included

Host core for GPU is chosen to maximize data throughput between GPU
and NUMA memory
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Performance Modeling on Hybrid Node
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Performance Modeling on Hybrid Node

Functional Performance Models of multicore

s(x) speed of a core executing a single-threaded kernel exclusively
s(x) = x/t

sc(x) speed of a core that executes a single-threaded kernel and shares
the system resources with identical cores, each core receives x units
sc(x) = x/maxc1 (ti )

Sc(x) speed of c cores that execute a multi-threaded kernel and share
system resources, x units distributed between cores
Sc(x) = x/t
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Performance Modeling on Hybrid Node

Functional Performance Models of multicore: Example
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S5(x): 5-threaded kernel on a socket, 1 core idle

S6(x): 6-threaded kernel on a socket
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Performance Modeling on Hybrid Node

Functional Performance Models of GPU
g(x): combined speed of a GPU and its dedicated core, exclusive PCIe
g(x) = x/t

gd(x) combined speed of a GPU and its dedicated core, that share
PCIe with identical pairs of processors, each pair receives x
computation units
gd(x) = x/maxd1 (ti )
Gd(x) combined speed of d GPUs and a dedicated CPU core that
execute a multi-GPU kernel and share PCIe, x computation units are
distributed between GPUs
Gd(x) = x/t
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Performance Modeling on Hybrid Node

Functional Performance Models of GPU: Example
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Performance Modeling on Hybrid Node

Impact of Resource Contention to Performance Modeling

CPU and GPU kernels benchmarked simultaneously on a socket

FPM of multiple cores S5(x) is barely affected

FPM of GPU g(x) gets 85% accuracy (speed drops by 7 - 15%)

S5(x), speed of multiple cores
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Performance Modeling on Hybrid Node

Performance Modeling of Hybrid System

Multicore/GPUs are modeled independently

Separate memory, programming models
Represented by speed functions (FPM)
Benchmarking with computational kernels

Performance model of multicore:

Approximate the speed of multiple cores
e.g. all cores in a processor except the
ones dedicated to GPUs

Performance model of GPU:

Approximate combined speed of a GPU
and it’s dedicated core Processing Flow
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Applications: Linear Algebra
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Applications: Linear Algebra

Applications: Linear Algebra

Linear Algebra applications:

Matrix multiplication

LU decomposition

Jacobi iterative method

. . .

How to optimally partition matrices?

Partition matrices between nodes

Sub-partition between devices within a node

To achieve load balancing, partition with respect to device and node
speed

Minimise total volume of communication

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 22 / 41



Applications: Linear Algebra

Matrix Partitioning

Simple Partitioning 2D Partitioning
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Applications: Linear Algebra

Matrix Multiplication on Heterogeneous Platform*

Input: constant processor speeds

Matrices partitioned so that

Area of the rectangle proportional to the speed
Volume of communication minimized

More accurate solution is based on speed functions as input**

* Beaumont, O. et al: Matrix Multiplication on Heterogeneous Platforms. IEEE Trans. Parallel Distrib. Syst. 2001

** Clarke, D. et al: Column-Based Matrix Partitioning for Parallel Matrix Multiplication on Heterogeneous Processors
Based on Functional Performance Models. In: HeteroPar-2011, LNCS 7155, 2012
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Applications: Linear Algebra

Matrix Multiplication on Heterogeneous Platform

Computational kernel:
panel-panel update

Processor speed - function
of area
Built by running the kernel
for square matrices

FPM-based partitioning
algorithm finds the optimal
areas
The areas are used as input

to the matrix partitioning

algorithm
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Applications: Linear Algebra

Matrix Multiplication on Heterogeneous Platform

Computational kernel:
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Matrix multiplication on hybrid node
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Matrix multiplication on hybrid node

Matrix multiplication on hybrid node

Experimental platform

CPU (AMD) GPUs (NVIDIA)

Architecture Opteron 8439SE GF GTX680 Tesla C870
Core Clock 2.8 GHz 1006 MHz 600 MHz
Number of Cores 4× 6 cores 1536 cores 128 cores
Memory Size 4× 16 GB 2048 MB 1536 MB
Memory Bandwidth 192.3 GB/s 76.8 GB/s
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Matrix multiplication on hybrid node

Computational Kernels for Hybrid Node

Multicore CPU:

GEMM routine from ACML library
Multi-threaded processes (one per socket)

GPU accelerator:

GEMM routine from CUBLAS library
Develop out-of-core kernel to overcome memory limitation
Overlap data transfers and kernel execution to hide latency

Out-of-core Kernel, Overlap of Data Transfers and Kernel Execution:
- allocated 5 buffers in device memory: A0, A1, B0, C0, C1
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Matrix multiplication on hybrid node

Experiments on hybrid multicore multi-GPU node

Execution time of the application under different configurations

Matrix size (blks) CPUs (sec) GTX680 (sec) Hybrid-FPM (sec)

40× 40 99.5 74.2 26.6
50× 50 195.4 162.7 77.8
60× 60 300.1 316.8 114.4
70× 70 491.6 554.8 226.1

Column 1: block size is 640× 640
Column 2: 4× 6 CPU cores, homogeneous data partitioning
Column 3: CPU core + GPU
Column 4: 2× 6 CPU cores + 2× 5 CPU cores + 2× ( CPU core + GPU ),
FPM-based data partitioning
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Matrix multiplication on hybrid node

Computation time of each process
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Matrix size 60× 60, Computation time reduced by 40%
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Matrix multiplication on hybrid node

Performance with different partitionings
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Data partitioning on heterogeneous cluster of hybrid nodes
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Data partitioning on heterogeneous cluster of hybrid nodes

Data partitioning on heterogeneous cluster of hybrid nodes

Target platform - dedicated heterogeneous cluster of hybrid nodes

Hierarchical partitioning algorithm

Dynamic algorithm - no a priori information about performance
required.
Inputs:

Problem size
Number of nodes
Number of devices per node
Device type (eg. cpu, gpu, . . . ).

Link computational kernel to be benchmarked for each device.

Initially distribution is partitioned evenly between nodes and between
devices within a node
Algorithm converges towards optimum solution
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Data partitioning on heterogeneous cluster of hybrid nodes

Hierarchical Partitioning Algorithm

q nodes, Q1, . . . ,Qq.

node Qi has pi devices, Pi1, . . . ,Pipi

Hierarchy in platform → hierarchy in partitioning
Nested parallelism
inter-node partitioning algorithm (INPA)
inter-device partitioning algorithm (IDPA)
IDPA is nested inside INPA
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Data partitioning on heterogeneous cluster of hybrid nodes

Hierarchical Partitioning Algorithm

W computational units to partition between nodes

inter-node partitioning algorithm (INPA) creates node-FPM’s
and computes w1, . . . ,wq

so that w1 + . . . + wq = W .
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Data partitioning on heterogeneous cluster of hybrid nodes

Hierarchical Partitioning Algorithm

Communication minimising algorithm has input: w1, . . . ,wq and
output: (m1, n1), . . . , (mq, nq) such that mi × ni = wi

and matrix is completely tiled.
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Data partitioning on heterogeneous cluster of hybrid nodes

Hierarchical Partitioning Algorithm

inter-device partitioning algorithm (IDPA) creates device-FPM’s
and computes di1, . . . , dip,
such that di1 + . . . + dip = bni
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Data partitioning on heterogeneous cluster of hybrid nodes
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Data partitioning on heterogeneous cluster of hybrid nodes

wi = mi × ni∑p
j=1 dij = b × ni
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Data partitioning on heterogeneous cluster of hybrid nodes

Experimental Setup

90 Nodes from Grid5000 Grenoble site

Cores: 0 1 2 3 4 5 6 7 8 Nodes Cores GPUs Hardware

Adonis 2 1 1 1 1 1 2 3 0 12 48 12 2.27/2.4GHz Xeon, 24GB
Edel 0 6 4 4 4 8 8 8 8 50 250 0 2.27GHz Xeon, 24GB
Genepi 0 3 3 3 3 4 4 4 4 28 134 0 2.5GHz Xeon, 8GB

Total 90 432 12

All nodes connected with InfiniBand communication network.

High performance BLAS libraries: Intel MKL for CPU, CUBLAS for
GPU devices.

Open MPI for inter node communication.

OpenMP for inter-device parallelism.
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Data partitioning on heterogeneous cluster of hybrid nodes

Experimental Results
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Data partitioning on heterogeneous cluster of hybrid nodes

Experimental Results

 0

 1

 2

 3

 4

 5

 0  20  40  60  80  100  120  140  160

S
p

e
e

d
 (

te
ra

F
L
O

P
S

)

Matrix size N  ( × 10
3
)

Total Matrix Multiplication Speed

FPM Partitioning
Multiple-CPM Partitioning

Single-CPM Partitioning
Homogeneous Partitioning

Functional performance model (FPM): the proposed algorithm

Multiple constant performance models (CPM): Redistribute based on
previous benchmark.

Single-CPM: One benchmark is preformed.

Homogeneous distribution: Partitioned evenly between nodes, then evenly
between devices within each node.
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Conclusion

Conclusion

Defined and built functional performance models (FPMs) of hybrid
multicore and multi-GPU system, considering it as a distributed
memory system

Adapted FPM-based data partitioning to hybrid node, achieved load
balancing and delivered good performance

Adapted dynamic FPM-based data partitioning to hybrid cluster,
achieved self-adaptiveness
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Conclusion

Thank You!

University College Heterogeneous Computing Science Foundation China Scholarship
Dublin Laboratory Ireland Council

Instituto de Engenharia Instituto Superior Tecnico Complex HPC
de Sistemas e Computadores Universidade de Lisboa EU COST Action IC0805

Alexey Lastovetsky (UCD HCL) Optimization of data parallel applications for multi-CPU/GPU PPAM 2013 41 / 41


	Introduction
	Background
	Programming Models for Hybrid Systems
	Performance Modeling on Hybrid Node
	Applications: Linear Algebra
	Matrix multiplication on hybrid node
	Data partitioning on heterogeneous cluster of hybrid nodes
	Conclusion

