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Copernicus: Data-centric
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OPPORTUNITIES
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Opportunities

• Application-oriented Opportunities:
– High performance computing for massive graphs
– Streaming analytics
– Informational Visualization techniques for 

massive graphs
– Heterogeneous systems: Methodologies for 

combining the use of the Cloud and Manycore for 
high-performance computing

– Energy-efficient high-performance computing
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Opportunity 1: High performance computing for massive graphs

• Traditional HPC has focused primarily on solving large problems from 
chemistry, physics, and mechanics, using dense linear algebra. 

• HPC faces new challenges to deal with:
– time-varying interactions among entities, and 
– massive-scale graph abstractions where the vertices represent the nouns or 

entities and the edges represent their observed interactions.
• Few parallel computers run well on these problems because 

– they often lack locality required to get high performance from distributed-
memory cache-based supercomputers. 

• Case study: Massively threaded architectures are shown to run several orders 
of magnitude faster than the fastest supercomputers on these types of 
problems!

 A focused research agenda is needed to design algorithms that 
scale on these new platforms. 
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• While our high performance computers have delivered a sustained petaflop, they 
have done so using the same antiquated batch processing style where a program 
and a static data set are scheduled to compute in the next available slot.

• Today, data is overwhelming in volume and rate, and we struggle to keep up with 
these streams.

 Fundamental computer science research is needed in:
 the design of streaming architectures, and 
 data structures and algorithms that can compute important analytics while sitting in the 

middle of these torrential flows.

Opportunity 2: Streaming analytics
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Opportunity 3: Information Visualization
techniques for massive graphs
• Information Visualization today

– addresses traditional scientific computing (fluid flow, molecular dynamics), or 
– when handling discrete data, scale to only hundreds of vertices at best. 

 However, there is a strong need for visualization in the data sciences so 
that analytics can gain understanding from data sets with from millions 
to billions of interacting non-planar discrete entities. 

– Applications include: data mining, intelligence, situational awareness
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NNDB Mapper of George Washington

Twitter social 
network using 
Large Graph 
Layout

Source: Akshay Java, from ebiquity group



Opportunity 4: Heterogeneous Systems: 
Methodologies for combining the use of the Cloud and 
Manycore for high-performance computing.
• Today, there is a dichotomy 

between using clouds (e.g. 
Hadoop, map-reduce) for massive 
data storage, filtering, 
summarization, and massively 
parallel/multithreaded systems 
for data-intensive computation.

 We must develop methodologies 
for employing these 
complementary systems for 
solving grand challenges in data 
analysis.
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Steve Mills, SVP of IBM Software (left), 
and Dr. John Kelly, SVP of IBM 
Research, view Stream Computing 
technology



Opportunity 5: Energy-efficient high-performance computing

• The main constraint for our ability to compute has changed
– from availability of compute resources
– to the ability to power and cool our systems within budget. 

 Holistic research is needed that can permeate from the architecture and 
systems up to the applications AND DATA CENTERS,  whereby energy use 
is a first-class object that can be optimized at all levels.
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Microsoft’s Chicago Million Server DataCenter



MOTIVATION
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Exascale Streaming Data Analytics:
Real-world challenges

All involve analyzing massive 
streaming complex networks:
• Health care  disease spread, detection 

and prevention of epidemics/pandemics 
(e.g. SARS, Avian flu, H1N1 “swine” flu)

• Massive social networks 
understanding communities, intentions, 
population dynamics, pandemic spread, 
transportation and evacuation

• Intelligence  business analytics, 
anomaly detection, security, knowledge 
discovery from massive data sets

• Systems Biology  understanding 
complex life systems, drug design, 
microbial research, unravel the mysteries 
of the HIV virus; understand life, disease,

• Electric Power Grid  communication, 
transportation, energy, water, food supply

• Modeling and Simulation  Perform full-
scale economic-social-political 
simulations

David A. Bader 12

0

50

100

150

200

250

300

350

400

450

De
c-

04

M
ar

-0
5

Ju
n-

05

Se
p-

05

De
c-

05

M
ar

-0
6

Ju
n-

06

Se
p-

06

De
c-

06

M
ar

-0
7

Ju
n-

07

Se
p-

07

De
c-

07

M
ar

-0
8

Ju
n-

08

Se
p-

08

De
c-

08

M
ar

-0
9

Ju
n-

09

Se
p-

09

De
c-

09

Million Users

Exponential growth:
More than 750 million active users

Sample queries: 
Allegiance switching: 
identify entities that switch 
communities.
Community structure:
identify the genesis and 
dissipation of communities
Phase change: identify 
significant change in the 
network structure

REQUIRES PREDICTING / INFLUENCE CHANGE IN REAL-TIME  AT SCALE

Ex: discovered minimal 
changes in O(billions)-size 
complex network that could 
hide or reveal top influencers  
in the community



Ubiquitous High Performance 
Computing (UHPC)

Goal: develop highly parallel, security enabled,  power efficient 
processing systems, supporting ease of programming, with resilient 
execution through all failure modes and intrusion attacks

Program Objectives:
One PFLOPS, single cabinet including self-contained cooling

50 GFLOPS/W (equivalent to 20 pJ/FLOP)

Total cabinet power budget 57KW, includes processing 
resources, storage and cooling

Security embedded at all system levels

Parallel, efficient execution models

Highly programmable parallel systems

Scalable systems – from terascale to petascale

Architectural Drivers:
Energy Efficient
Security and Dependability
Programmability

Echelon: Extreme-scale Compute Hierarchies with 
Efficient Locality-Optimized Nodes

“NVIDIA-Led Team Receives $25 Million Contract From DARPA to Develop High-Performance GPU Computing Systems” -MarketWatch

David A. Bader (CSE)
Echelon Leadership Team



PRODIGAL: 
Proactive Detection of Insider 
Threats with Graph Analysis
and Learning
ADAMS Program Kickoff Meeting,  June 6-7, 2011

Tuesday June 7, 2001

SAIC
Georgia Tech Research Institute

Carnegie-Mellon University
Oregon State University

University of Massachusetts



The PRODIGAL Architecture



Center for Adaptive Supercomputing Software
for MultiThreaded Architectures (CASS-MT)
• Launched July 2008

• Pacific-Northwest Lab
– Georgia Tech, Sandia, WA State, Delaware

• The newest breed of supercomputers have hardware set up not just for 
speed, but also to better tackle large networks of seemingly random 
data. And now, a multi-institutional group of researchers has been 
awarded over $14 million to develop software for these supercomputers. 
Applications include anywhere complex webs of information can be 
found: from internet security and power grid stability to complex 
biological networks.
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Example: Mining Twitter for Social Good
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ICPP 2010 

Image credit: bioethicsinstitute.org



• CDC / Nation-scale surveillance of 
public health

• Cancer genomics and drug design
– computed Betweenness Centrality 

of Human Proteome

Human Genome core protein interactions
Degree vs. Betweenness Centrality
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Network Analysis for Intelligence and Survelliance

• [Krebs ’04] Post 9/11 Terrorist 
Network Analysis from public domain 
information

• Plot masterminds correctly identified 
from interaction patterns: centrality

• A global view of entities is often more 
insightful

• Detect anomalous activities by 
exact/approximate graph matching

Image Source: http://www.orgnet.com/hijackers.html

Image Source: T. Coffman, S. Greenblatt, S. Marcus, Graph-based technologies 
for intelligence analysis, CACM, 47 (3, March 2004): pp 45-47
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Graphs are pervasive in large-scale data analysis

• Sources of massive data: petascale simulations, experimental devices, 
the Internet, scientific applications.

• New challenges for analysis: data sizes, heterogeneity, uncertainty, data 
quality.

Astrophysics 
Problem: Outlier detection. 
Challenges: massive datasets, 
temporal variations.
Graph problems: clustering, 
matching. 

Bioinformatics
Problem: Identifying drug target 
proteins.
Challenges: Data heterogeneity, 
quality.
Graph problems: centrality, 
clustering.

Social Informatics
Problem: Discover emergent 
communities, model spread of 
information.
Challenges: new analytics routines, 
uncertainty in data.
Graph problems: clustering, 
shortest paths, flows. 

Image sources: (1) http://physics.nmt.edu/images/astro/hst_starfield.jpg
(2,3) www.visualComplexity.com
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Flywheel has driven HPC into a corner
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For decades, HPC has been on a 
vicious cycle of enabling 
applications that run well on HPC 
systems.

Real-World Applications
(with natural parallelism) 

Data-intensive computing has natural concurrency; yet HPC 
architectures are designed to achieve high floating-point rates 
by exploiting spatial and temporal localities.

• For the first time in decades, manycore and 
multithreaded can let us rethink architecture.

Data-intensive computing has natural concurrency; yet HPC 
architectures are designed to achieve high floating-point rates 
by exploiting spatial and temporal localities.

• For the first time in decades, manycore and 
multithreaded can let us rethink architecture.

These are today’s 
MPI applications!
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Architectural Requirements for
the Efficient Graph Analysis (Challenges)

• Runtime is dominated by latency
– Random accesses to global address space
– Perhaps many at once

• Essentially no computation to hide memory 
costs

• Access pattern is data dependent
– Prefetching unlikely to help
– Usually only want small part of cache line

• Potentially abysmal locality at all levels of 
memory hierarchy

22
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Architectural Requirements for
the Efficient Graph Analysis (Desired Features)

• A large memory capacity
- Low latency / high bandwidth

– For small messages!
• Latency tolerant
• Light-weight synchronization mechanisms
• Global address space

– No graph partitioning required
– Avoid memory-consuming profusion of ghost-nodes
– No local/global numbering conversions

23



Streaming Graphs

STINGER: A Data Structure for Graphs with 
Streaming Updates

Light-weight data structure that supports 
efficient iteration and efficient updates.

Experiments with Streaming Updates to 
Clustering Coefficients

Working with bulk updates, can handle almost 
200k per second
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STING Extensible Representation (STINGER)
Enhanced representation developed for dynamic graphs developed in 
consultation with David A. Bader, Johnathan Berry, Adam Amos-Binks, 
Daniel Chavarría-Miranda, Charles Hastings, Kamesh Madduri, and 
Steven C. Poulos.
Design goals:

Be useful for the entire “large graph” community
Portable semantics and high-level optimizations across multiple 
platforms & frameworks (XMT C, MTGL, etc.)
Permit good performance: No single structure is optimal for all.
Assume globally addressable memory access
Support multiple, parallel readers and a single writer

Operations:
Insert/update & delete both vertices & edges
Aging-off: Remove old edges (by timestamp)
Serialization to support checkpointing, etc.
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STING Extensible Representation
Semi-dense edge 
list blocks with free 
space
Compactly stores 
timestamps, types, 
weights
Maps from 
application IDs to 
storage IDs
Deletion by negating 
IDs, separate 
compaction
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Testbed: Clustering Coefficients

Roughly, the ratio of actual triangles to possible triangles 
around a vertex.

Defined in terms of triplets.
i-j-v is a closed triplet (triangle).
m-v-n is an open triplet.
Clustering coefficient

# closed triplets / # all triplets
Locally, count those around v.
Globally, count across entire graph.

Multiple counting cancels (3/3=1)
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Streaming updates to clustering coefficients
Monitoring clustering coefficients could identify anomalies, 
find forming communities, etc.
Computations stay local.  A change to edge <u, v> affects 
only vertices u, v, and their neighbors.

Need a fast method for updating the triangle counts, 
degrees when an edge is inserted or deleted.

Dynamic data structure for edges & degrees: STINGER
Rapid triangle count update algorithms: exact and approximate

“Massive Streaming Data Analytics: A Case Study with Clustering Coefficients.” Ediger, David, Karl 
Jiang, E. Jason Riedy, and David A. Bader. MTAAP 2010, Atlanta, GA, April 2010.

u v-1 -1

-1
-1
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Updating clustering coefficients
Using RMAT as a graph and edge stream generator.
– Mix of insertions and deletions

Result summary for single actions
– Exact: from 8 to 618 actions/second
– Approx: from 11 to 640 actions/second

Alternative: Batch changes
– Lose some temporal resolution within the batch
– Median rates for batches of size B:

STINGER overhead is minimal; most time in spent metric.

Algorithm B = 1 B = 1000 B = 4000

Exact 90 25 100 50 100

Approx. 60 83 700 193 300
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CHALLENGES
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Hierarchy of Interesting Analytics

Extend single-shot graph queries to include time.
Are there s-t paths between time T1 and T2?
What are the important vertices at time T?

Use persistent queries to monitor properties.
Does the path between s and t shorten drastically?
Is some vertex suddenly very central?

Extend persistent queries to fully dynamic properties.
Does a small community stay independent rather than merge with 
larger groups?
When does a vertex jump between communities?

New types of queries, new challenges...
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Graph Analytics for Social Networks
• Are there new graph techniques? Do they parallelize? 

Can the computational systems (algorithms, 
machines) handle massive networks with millions to 
billions of individuals?  Can the techniques tolerate 
noisy data, massive data, streaming data, etc. …

• Communities may overlap, exhibit different 
properties and sizes, and be driven by different 
models
– Detect communities (static or emerging)
– Identify important individuals
– Detect anomalous behavior
– Given a community, find a representative 

member of the community
– Given a set of individuals, find the best 

community that includes them
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Open Questions for Massive Data Analytic Apps

• How do we diagnose the health of streaming systems?
• Are there new analytics for massive spatio-temporal interaction 

networks and graphs (STING)?
• Do current methods scale up from thousands to millions and 

billions?
• How do I model massive, streaming data streams?
• Are algorithms resilient to noisy data? 
• How do I visualize a STING with O(1M) entities? O(1B)?  O(100B)? 

with scale-free power law distribution of vertex degrees and 
diameter =6 …

• Can accelerators aid in processing streaming graph data?
• How do we leverage the benefits of multiple architectures (e.g. 

map-reduce clouds, and massively multithreaded architectures) in 
a single platform?
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Community development activities (2/3)10th DIMACS Implementation Challenge
Graph Partitioning and Graph Clustering are ubiquitous subtasks in many 
application areas. Generally speaking, both techniques aim at the 
identification of vertex subsets with many internal and few external edges. To 
name only a few, problems addressed by graph partitioning and graph 
clustering algorithms are: 
– What are the communities within an (online) social network? 
– How do I speed up a numerical simulation by mapping it efficiently onto a parallel 

computer? 
– How must components be organized on a computer chip such that they can 

communicate efficiently with each other? 
– What are the segments of a digital image? 
– Which functions are certain genes (most likely) responsible for? 

12-13 February 2012,  Atlanta, Georgia
– Co-sponsored by DIMACS, by the Command, Control, and Interoperability Center for 

Advanced Data Analysis (CCICADA); Pacific Northwest National Laboratory; Sandia 
National Laboratories; and Deutsche Forschungsgemeinschaft (DFG).

– Paper deadline: 21 October 2011
– http://www.cc.gatech.edu/dimacs10/
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Graph500 Benchmark, www.graph500.org

• Cybersecurity
– 15 Billion Log Entires/Day (for large 

enterprises)
– Full Data Scan with End-to-End Join 

Required

• Medical Informatics
– 50M patient records, 20-200 

records/patient, billions of individuals
– Entity Resolution Important

• Social Networks
– Example, Facebook, Twitter
– Nearly Unbounded Dataset Size

• Data Enrichment
– Easily PB of data
– Example: Maritime Domain 

Awareness
• Hundreds of Millions of Transponders
• Tens of Thousands of Cargo Ships
• Tens of Millions of Pieces of Bulk 

Cargo
• May involve additional data (images, 

etc.)

• Symbolic Networks
– Example, the Human Brain
– 25B Neurons
– 7,000+ Connections/Neuron
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Defining a new set of benchmarks to guide the design of hardware architectures and 
software systems intended to support such applications and to help procurements. 
Graph algorithms are a core part of many analytics workloads. 
Credit: Rich Murphy (Sandia), and Graph 500 committee

• Five Business Area Data Sets:
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