' ) e
Opportunities and Challenges in

Massive Data-Intensive Computing
David A. Bader

Georgia College of
Tech | Commpuriing

= Computational Science and Engineering



Ptolemy: Floating-point centric ...

|
Georgia Cdllege
David A. Bader Tech |




Copernicus: Data-centric
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Figure 2 — This diagram from Copernicus’ original manuscript places the Sun

at the centre of the universe.
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Opportunities

e Application-oriented Opportunities:
- High performance computing for massive graphs
— Streaming analytics

- Informational Visualization techniques for
massive graphs

- Heterogeneous systems: Methodologies for
combining the use of the Cloud and Manycore for
high-performance computing

- Energy-efficient high-performance computing
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Opportunity 1: High performance computing for massive graphs

e Traditional HPC has focused primarily on solving large problems from
chemistry, physics, and mechanics, using dense linear algebra.
e HPC faces new challenges to deal with:
- time-varying interactions among entities, and

- massive-scale graph abstractions where the vertices represent the nouns or
entities and the edges represent their observed interactions.

* Few parallel computers run well on these problems because

- they often lack locality required to get high performance from distributed-
memory cache-based supercomputers.

* (Case study: Massively threaded architectures are shown to run several orders
of magnitude faster than the fastest supercomputers on these types of
problems!

=» A focused research agenda is needed to design algorithms that
scale on these new platforms.

Georgia Coadllege of
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Opportunity 2: Streaming analytics

* While our high performance computers have delivered a sustained petaflop, they
have done so using the same antiquated batch processing style where a program
and a static data set are scheduled to compute in the next available slot.

 Today, data is overwhelming in volume and rate, and we struggle to keep up with
these streams.
=» Fundamental computer science research is needed in:
=>» the design of streaming architectures, and

=>» data structures and algorithms that can compute important analytics while sitting in the
middle of these torrential flows.
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Opportunity 3: Information Visualization ~—
techniques for massive graphs

e Information Visualization today
- addresses traditional scientific computing (fluid flow, molecular dynamics), or
- when handling discrete data, scale to only hundreds of vertices at best.

=» However, there is a strong need for visualization in the data sciences so
that analytics can gain understanding from data sets with from millions
to billions of interacting non-planar discrete entities.
- Applications include: data mining, intelligence, situational awareness
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Opportunity 4: Heterogeneous Systems: | e BN |
Methodologies for combining the use of the Cloudjpd__

—

Manycore for high-performance computing. — N

* Today, there is a dichotomy
between using clouds (e.g.
Hadoop, map-reduce) for massive
data storage, filtering,
summarization, and massively
parallel/multithreaded systems il st
for data-intensive computation. ' e difen e ! <A

nVIDIA.

= We must develop methodologies
for employing these
complementary systems for
solving grand challenges in data
analysis.

Steve Mills, SVP
and Dr. John Kelly, SVP of IBM

Research, view Stream Computing ==A v

technology
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MOTIVATION
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Exascale Streaming Data Analytics:
Real-world challenges

All involve analyzing massive
streaming complex networks:

Health care = disease spread, detection
and prevention of epidemics/pandemics
(e.g. SARS, Avian flu, HIN1 “swine” flu)

Massive social networks 2>
understanding communities, intentions,
population dynamics, pandemic spread,
transportation and evacuation

Intelligence = business analytics,
anomaly detection, security, knowledge
discovery from massive data sets

Systems Biology = understanding
complex life systems, drug design,
microbial research, unravel the mysteries
of the HIV virus; understand life, disease,

Electric Power Grid = communication,
transportation, energy, water, food supply

Modeling and Simulation = Perform full-
scale economic-social-political
simulations

® Million Users

Jun-07

Sep-07
Dec-07 |
Mar-08
Jun-08 |
Sep-08
Dec-08 |
Mar-09
Jun-09 |
Sep-09 |
Dec-09

a AM myAOL @ Ask &) Backfiip

4 BallHype {® Bebo »®) BlinkList ® Blogmarks
B Faves by Yahoo Buzz f Delicious 2% Digg

-1 Diigo = Emall Facebook & Favorites
IR Fark @ FeedMelinks  [§§ FriencFeed Furl

Google k Kaboodle Je KIRTSY 30 Link-a-Gogo
[ Linkedin & Live @ Magnolia B2 Mister Wong
4 Mixx A Multiply ¥? Myweb == MySpace
R Netvouz 3 Newsvine 33 Propeller 3 Reddit

& Segnalo %’ Simpy % Sk'rt J Slashdot
E spun Q) StumbleUpon %= Stylehive Tallrank

= Technorat @ ThisNext & Twitter B vardbarker
@ vahoo

Ex: discovered minimal
changes in O(billions)-size
complex network that could
hide or reveal top influencers
in the community

Sample queries:
Allegiance switching:
identify entities that switch
communities.

Community structure:
identify the genesis and
dissipation of communities
Phase change: identify
significant change in the
network structure

REQUIRES PREDICTING / INFLUENCE CHANGE IN REAL-TIME AT SCALE

David A. Bader
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Ubiquitous High Performance

Computing (UHPC)

Goal: develop highly parallel, security enabled, power efficient
processing systems, supporting ease of programming, with resilient
execution through all failure modes and intrusion attacks

Architectural Drivers:
e Energy Efficient
® Security and Dependability
e Programmability

Program Objectives:
@ One PFLOPS, single cabinet including self-contained cooling
® 50 GFLOPS/W (equivalent to 20 pJ/FLOP)

@ Total cabinet power budget 57KW, includes processing
resources, storage and cooling

1

Module Cabinet
Security embedded at all system levels Terascale U H PC Petascale

°
@ Parallel, efficient execution models

® Highly programmable parallel systems David A. Bader (CSE)

® Scalable systems — from terascale to petascale Echelon Leadership Team

SANVIDIA. =0

THE SUPERCOMPUTER COMPANY

“NVIDIA-Led Team Receives $25 Million Contract From DARPA to Develop High-Performance GPU Computing Systems” -marketwatch

Echelon: Extreme-scale Compute Hierarchies with
| SeZhnsiogy Efficient Locality-Optimized Nodes
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PRODIGAL: _ _
Georgia Tech Research Institute

Carnegie-Mellon University

Proactive Detection of Insider
Threats with Graph Analysis o S TR
niversity of Massachusetts

and Learning
ADAMS Program Kickoff Meeting, June 6-7, 2011

| Carnegie

Georgia | Mellon
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From Science to Solutions




The PRODIGAL Architecture

Legend

GTRI
CMu

0osu

UMass

Ut

U

Shared

Interactive and
Automated
Learning
Methods

User Interaction—Case Review

Insider Threat Estimates, Activities, Drill-Down to Raw Data
(Provenance)

Knowledge Store

Knowledge

Models, Features, Metrics, Scenarios, Categories,
Conditional Probability Distributions

Hypotheses

Anomalies, Associations,
Activities, Threats

Observations

Groups, Trends, Changes
Entities, Organizations, Relationships

Keystrokes, Accounts, Locations,
Phone Numbers

Data Ingest

High Speed Massive
Scale Data Ingest; Data
Staging and Clustering

to Optimize Access

Consolidate, Aggregate,
Summarize, Reduce

HADOOP for Massively
Scalable Graph Mining

Analysis of Large Graphs

STINGER Model for Streaming

A 4 1 1 1 _

Raw Data Store

From Science to Solutions
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User Feedback—Expert Advice

Interactive Local Graph Exploration
and Feedback Incorporation

Rare Category Discovery

Threat Ranking

Evidence Combinations for Threat Scoring

and Sensitivity Analysis

Semantic Analysis

Seed Set Expansion; Massive Scale Community
Detection; Temporal Based Anomaly Detection
Exploiting Event Sequences; Vector Space
Models for Unsupervised Activity Classification
and Anomaly Detection;

Density Estimators for Relational Data;
Conditional Probability Estimators;
Causal Learning Algorithms;

Activity and Goal Recognition

— NN

Structural Anomaly Detection

Aggregation of Weak Signals by Propagation-Based
Graph Algorithms; Temporal Egonet Anomaly Detec-
tion; Massively Scalable Graph Mining Algorithms;

Boosted Density Estimation;
Cross-Prediction; Pseudo-Anomaly
Discrimination; Multi-Scale Anomaly Aggregation

N-2125-0405

Carnegie
[\-"lellorl"lg

University




Center for Adaptive Supercomputing'S s
for MultiThreaded Architectures (CASS-MT)

e Launched July 2008 77

. . Pacific N h
e Pacific-Northwest Lab e Lo

— Georgia Tech, Sandia, WA State, Delaware

* The newest breed of supercomputers have hardware set up not just for
speed, but also to better tackle large networks of seemingly random
data. And now, a multi-institutional group of researchers has been
awarded over $14 million to develop software for these supercomputers.
Applications include anywhere complex webs of information can be
found: from internet security and power grid stability to complex
biological networks.

C RN,

Georgia GCadllege of
David A. Bader Tech Compuiing 16



Example: Mining Twitter for SdCiaI Good

ICPP 2010

Massive Social Network Analysis:
Mining Twitter for Social Good

David Ediger Karl Jiang
Jason Riedy David A. Bader
Georgia Institute of Technology

Atlanta. GA. USA
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Courtney Corley Rob Farber
Pacific Northwest National Lab.
Richland. WA, USA

William N. Reynolds
Least Squares Software, In
Albuquerque, NM. USA

involves over 400 million active users with an ave
120 *friendship” connections each and sharing 5
to items each month [11].

One analysis approach treats the interactions as
and applies tools from graph theory, social ¢
analysis, and scale-free networks [29]. Howey
volume of data that must be processed to appl
techniques overwhelms current computational cap:
Even well-understood analytic methodologies
advances in both hardware and software to proc
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Subcommunity filtering on Twitter data sets
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Massive Data Analytics: Protecting our étion

US High Voltage Transmission

Public Health

e CDC / Nation-scale surveillance of

Grid (>150,000 miles of line) oublic health

Ehe New ork Times
Thursday, September 4, o008

Report on Blackout Is Said To Describe Failure to React; 14 -

By WAAT THEWS L infaL D
Fublizshed: Mowember 12, 20032

A report on the Aug. 14 blackout identifies specific lapses by various
parties, including FirstEnergy's failure to react properly to the loss of 2

transrission line, people who have seen drafts of it say.

A worldng group of experts from eight states and Canada will meet in
private on Weadnesday to evaluate the report, peorple involved in the

Ly Uy O S N I, [ I g A J T AN N s P S

David A. Bader

 (Cancer genomics and drug design
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Network Analysis for Intelligence and Survelliance

e [Krebs '04] Post 9/11 Terrorist
Network Analysis from public domain
information

* Plot masterminds correctly identified
from interaction patterns: centrality

* Aglobal view of entities is often more
insightful

* Detect anomalous activities by
exact/approximate graph matching

David A. Bader

Image Source: http://www.orgnet.com/hijackers.html
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Graphs are pervasive in large-scale data analysis

e Sources of massive data: petascale simulations, experimental devices,
the Internet, scientific applications.

* New challenges for analysis: data sizes, heterogenelty, uncertainty, data

quality. A BlolnformatICS Social Informatics
e Problem: Identifving drug t ‘ . 1 Problem: Discover emergent
5 Astrophysics  CTOUET. 1den ifying drug targe ' | communities, model spread of
' Problem: Outlier detection. ! ; proteins. | 1 information.
. Challenges: massive datasets, | { Challenges: Data heterogeneity, | i oy, anges: new analytics routines,
. temporal variations. Lo quality. _ . ' | uncertainty in data.
. Graph problems: clustering, i | Graph problems: centrality, | Graph problems: clustering,
: matching. | 1 Clustering. | shortest paths, flows.

Image sources: (1) http://physics.nmt.edu/images/astro/hst_starfield.jpg

(2,3) www.visualComplexity.com Georgla @@ﬂ@ﬁ
David A. Bader Tech  Compuiting 20




Flywheel has driven HPC into a corn

Real-World Applications

For decades, HPC has been on a (with natural parallelism)
vicious cycle of enabling l

applications that run well on HPC
systems.

“HPC”
Applications

.

~" Arch:

FP,
Massively-
regular

4 Prog.
Model:
4 l

=>» Data-intensive computing has natural concurrency; yet HPC | | These are today’s

architectures are designed to achieve high floating-point rates MPI applications!

by exploiting spatial and temporal localities. '

* For the first time in decades, manycore and
multithreaded can let us rethink architecture.
Georgia Cadllege of

David A. Bader Tech Compuiing 21



Architectural Requirements for = D3
the Efficient Graph Analysis (Challenges)

* Runtime is dominated by latency
- Random accesses to global address space

- Perhaps many at once

e Essentially no computation to hide memory
costs

e Access pattern is data dependent
— Prefetching unlikely to help

- Usually only want small part of cache line

* Potentially abysmal locality at all levels of
memory hierarchy

Georgia Codllege off
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Architectural Requirements for
the Efficient Graph Analysis (Desired Features)

* A large memory capacity
- Low latency / high bandwidth
- For small messages!
e Latency tolerant
e Light-weight synchronization mechanisms
* Global address space
- No graph partitioning required
- Avoid memory-consuming profusion of ghost-nodes
- No local/global numbering conversions

Georgia GCdllege of
David A. Bader Tech Compuiing



Streaming Graphs

STINGER: A Data Structure for Graphs with
Streaming Updates

m Light-weight data structure that supports
efficient iteration and efficient updates.
Experiments with Streaming Updates to

Clustering Coefficients

m Working with bulk updates, can handle almost
200k per second

Georgia GCaollege of
David A. Bader Tech  Compuiting
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STING Extensible Representation (STINGER)

Enhanced representation developed for dynamic graphs developed in
consultation with David A. Bader, Johnathan Berry, Adam Amos-Binks,
Daniel Chavarria-Miranda, Charles Hastings, Kamesh Madduri, and

Steven C. Poulos.
Design goals:
B Be useful for the entire “large graph” community

B Portable semantics and high-level optimizations across multiple
platforms & frameworks (XMT C, MTGL, etc.)

B Permit good performance: No single structure is optimal for all.

B Assume globally addressable memory access

® Support multiple, parallel readers and a single writer
Operations:

B Insert/update & delete both vertices & edges

B Aging-off: Remove old edges (by timestamp)

W Serialization to support checkpointing, etc.

Georgia Codllege off
David A. Bader Tech Computing 25
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STING Extensible Representation

Semi-dense edge

list blocks with free -

space

Compactly stores
timestamps, types,

weights
Maps from

application IDs to
storage |IDs

Deletion by negating

IDs, separate
compaction

David A. Bader
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Testbed: Clustering Coefficients

Roughly, the ratio of actual triangles to possible triangles
around a vertex.

Defined in terms of triplets.
I-]-v IS a closed triplet (triangle).
m-v-n IS an open triplet.
Clustering coefficient

# closed triplets / # all triplets
Locally, count those around v.

Globally, count across entire graph.
m Multiple counting cancels (3/3=1)

Georgia GCaollege of
David A. Bader Tech Comnpuiing 27
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Streaming updates to clustering c'efflm

Monitoring clustering coefficients could identify anomalies,
find forming communities, etc.

Computations stay local. A change to edge <u, v> affects
only vertices u, v, and their neighbors.

-1

-1 -1

Need a fast method for updating the triangle counts,
degrees when an edge is inserted or deleted.
m Dynamic data structure for edges & degrees: STINGER

m Rapid triangle count update algorithms: exact and approximate

“Massive Streaming Data Analytics: A Case Study with Clustering Coefficients.” Ediger, David, Karl
Jiang, E. Jason Riedy, and David A. Bader. MTAAP 2010, Atlanta, GA, April 2010.

Georgia Codllege off
David A. Bader Tech ' Comnpuifing 28



T
Updating clustering coefficients

Using RMAT as a graph and edge stream generator.
— Mix of insertions and deletions
Result summary for single actions
— Exact: from 8 to 618 actions/second
— Approx: from 11 to 640 actions/second
Alternative: Batch changes
— Lose some temporal resolution within the batch
— Median rates for batches of size B:

Algorithm B=1 B =1000 B = 4000
Exact 90 25 100 50 100
Approx. 60 83 700 193 300

STINGER overhead is minimal; most time in spent metric.

Georgia Codllege off
David A. Bader Tech ' Comnpuifing 29



CHALLENGES

David A. Bader
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Hierarchy of Interesting Analytics

Extend single-shot graph queries to include time.
m Are there s-t paths between time T, and T,,?
m What are the important vertices at time 77

Use persistent queries to monitor properties.
m Does the path between s and t shorten drastically?
m |s some vertex suddenly very central?

Extend persistent queries to fully dynamic properties.

m Does a small community stay independent rather than merge with
larger groups?
m When does a vertex jump between communities?

New types of queries, new challenges...

Georgia GCdllege of
David A. Bader Tech Comnpuiing 31
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Graph Analytics for Social Networks

* Are there new graph techniques? Do they parallelize?
Can the computational systems (algorithms,
machines) handle massive networks with millions to
billions of individuals? Can the techniques tolerate
noisy data, massive data, streaming data, etc. ...

 Communities may overlap, exhibit different
properties and sizes, and be driven by different
models

- Detect communities (static or emerging)
- ldentify important individuals
- Detect anomalous behavior

Suddenly, the flock became suspicious:

- Given a community, find a representative Flow came The newcomer wast't shorn?
member of the community

- @Given a set of individuals, find the best
community that includes them

Georgia Caollege ol
David A. Bader Tech | Computing 32
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Open Questions for Massive Data Analytié Apps

* How do we diagnose the health of streaming systems?

* Are there new analytics for massive spatio-temporal interaction
networks and graphs (STING)?

Do current methods scale up from thousands to millions and
billions?

e How do | model massive, streaming data streams?

* Are algorithms resilient to noisy data?

e How do | visualize a STING with O(1M) entities? O(1B)? O(100B)?
with scale-free power law distribution of vertex degrees and
diameter =6 ...

 Can accelerators aid in processing streaming graph data?

 How do we leverage the benefits of multiple architectures (e.g.
map-reduce clouds, and massively multithreaded architectures) in

a single platform? _
Georgia GCdllege of
David A. Bader Tech || Comnputing 33



10" DIMACS Implementation Challenge

Graph Partitioning and Graph Clustering are ubiquitous subtasks in many
application areas. Generally speaking, both techniques aim at the
identification of vertex subsets with many internal and few external edges. To
name only a few, problems addressed by graph partitioning and graph
clustering algorithms are:

- What are the communities within an (online) social network?

- How do | speed up a numerical simulation by mapping it efficiently onto a parallel
computer?

- How must components be organized on a computer chip such that they can
communicate efficiently with each other?

- What are the segments of a digital image?
— Which functions are certain genes (most likely) responsible for?

12-13 February 2012, Atlanta, Georgia

— Co-sponsored by DIMACS, by the Command, Control, and Interoperability Center for
Advanced Data Analysis (CCICADA); Pacific Northwest National Laboratory; Sandia
National Laboratories; and Deutsche Forschungsgemeinschaft (DFG).

— Paper deadline: 21 October 2011

— http://www.cc.gatech.edu/dimacs10/ Georuia | Goliegs ot
David A. Bader Tech  Compuiting 2




Graph500 Benchmark, www.graph500.org

Defining a new set of benchmarks to guide the design of hardware architectures and
software systems intended to support such applications and to help procurements.
Graph algorithms are a core part of many analytics workloads.

Credit: Rich Murphy (Sandia), and Graph 500 committee
* Five Business Area Data Sets:

e Cybersecurity e Data Enrichment
- 15 Billion Log Entires/Day (for large - Easily PB of data
enterprises) - Example: Maritime Domain
- Full Data Scan with End-to-End Join Awareness
Required * Hundreds of Millions of Transponders

* Tens of Thousands of Cargo Ships
* Tens of Millions of Pieces of Bulk

e Medical Informatics

- 50M patient records, 20-200 Cargo
records/patient, billions of individuals . May involve additional data (images,
- Entity Resolution Important etc.)
e Social Networks e Symbolic Networks
- Example, Facebook, Twitter - Example, the Human Brain
- Nearly Unbounded Dataset Size - 25B Neurons

- 7,000+ Connections/Neuron

Georgia GCdllege of
David A. Bader Tech Comnpuiing 35
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Bader, Related Recent Publications (2005-2008)

. D.A. Bader, G. Cong, and J. Feo, “On the Architectural Requirements for Efficient Execution of Graph Algorithms,” The 34th International
Conference on Parallel Processing (ICPP 2005), pp. 547-556, Georg Sverdrups House, University of Oslo, Norway, June 14-17, 2005.

. D.A. Bader and K. Madduri, “Design and Implementation of the HPCS Graph Analysis Benchmark on Symmetric Multiprocessors,” The 12th
International Conference on High Performance Computing (HiPC 2005), D.A. Bader et al., (eds.), Springer-Verlag LNCS 3769, 465-476,
Goa, India, December 2005.

. D.A. Bader and K. Madduri, “Designing Multithreaded Algorithms for Breadth-First Search and st-connectivity on the Cray MTA-2,” The 35th
International Conference on Parallel Processing (ICPP 2006), Columbus, OH, August 14-18, 2006.

. D.A. Bader and K. Madduri, “Parallel Algorithms for Evaluating Centrality Indices in Real-world Networks,” The 35th International
Conference on Parallel Processing (ICPP 2006), Columbus, OH, August 14-18, 2006.

. K. Madduri, D.A. Bader, J.W. Berry, and J.R. Crobak, “Parallel Shortest Path Algorithms for Solving Large-Scale Instances,” 9th DIMACS
Implementation Challenge - The Shortest Path Problem, DIMACS Center, Rutgers University, Piscataway, NJ, November 13-14, 2006.

. K. Madduri, D.A. Bader, J.W. Berry, and J.R. Crobak, “An Experimental Study of A Parallel Shortest Path Algorithm for Solving Large-Scale
Graph Instances,” Workshop on Algorithm Engineering and Experiments (ALENEX), New Orleans, LA, January 6, 2007.

. J.R. Crobak, J.W. Berry, K. Madduri, and D.A. Bader, “Advanced Shortest Path Algorithms on a Massively-Multithreaded Architecture,” First
Workshop on Multithreaded Architectures and Applications (MTAAP), Long Beach, CA, March 30, 2007.

J D.A. Bader and K. Madduri, “High-Performance Combinatorial Techniques for Analyzing Massive Dynamic Interaction Networks,” DIMACS
Workshop on Computational Methods for Dynamic Interaction Networks, DIMACS Center, Rutgers University, Piscataway, NJ, September
24-25, 2007.

J D.A. Bader, S. Kintali, K. Madduri, and M. Mihail, “Approximating Betewenness Centrality,” The 5th Workshop on Algorithms and Models for
the Web-Graph (WAW2007), San Diego, CA, December 11-12, 2007.

. David A. Bader, Kamesh Madduri, Guojing Cong, and John Feo, “Design of Multithreaded Algorithms for Combinatorial Problems,” in S.
Rajasekaran and J. Reif, editors, Handbook of Parallel Computing: Models, Algorithms, and Applications, CRC Press, Chapter 31, 2007.

J Kamesh Madduri, David A. Bader, Jonathan W. Berry, Joseph R. Crobak, and Bruce A. Hendrickson, “Multithreaded Algorithms for
Processing Massive Graphs,” in D.A. Bader, editor, Petascale Computing: Algorithms and Applications, Chapman & Hall / CRC Press,
Chapter 12, 2007.

J D.A. Bader and K. Madduri, “SNAP, Small-world Network Analysis and Partitioning: an open-source parallel graph framework for the
exploration of large-scale networks,” 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS), Miami, FL, April 14-
18, 2008.
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Bader, Related Recent Publications (2009-2010)

S. Kang, D.A. Bader, “An Efficient Transactional Memory Algorithm for Computing Minimum Spanning Forest
of Sparse Graphs,” 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), Raleigh, NC, February 2009.

Karl Jiang, David Ediger, and David A. Bader. “Generalizing k-Betweenness Centrality Using Short Paths and
a Parallel Multithreaded Implementation.” The 38th International Conference on Parallel Processing (ICPP),
Vienna, Austria, September 2009.

Kamesh Madduri, David Ediger, Karl Jiang, David A. Bader, Daniel Chavarria-Miranda. “A Faster Parallel
Algorithm and Efficient Multithreaded Implementations for Evaluating Betweenness Centrality on Massive
Datasets.” 3" Workshop on Multithreaded Architectures and Applications (MTAAP), Rome, Italy, May 2009.

David A. Bader, et al. “STINGER: Spatio-Temporal Interaction Networks and Graphs (STING) Extensible
Representation.” 2009.

David Ediger, Karl Jiang, E. Jason Riedy, and David A. Bader. “Massive Streaming Data Analytics: A Case
Study with Clustering Coefficients,” Fourth Workshop in Multithreaded Architectures and Applications
(MTAAP), Atlanta, GA, April 2010.

Seunghwa Kang, David A. Bader. “Large Scale Complex Network Analysis using the Hybrid Combination of a
MapReduce cluster and a Highly Multithreaded System:,” Fourth Workshop in Multithreaded Architectures
and Applications (MTAAP), Atlanta, GA, April 2010.

David Ediger, Karl Jiang, Jason Riedy, David A. Bader, Courtney Corley, Rob Farber and William N. Reynolds.
“Massive Social Network Analysis: Mining Twitter for Social Good,” The 39th International Conference on
Parallel Processing (ICPP 2010), San Diego, CA, September 2010.

Virat Agarwal, Fabrizio Petrini, Davide Pasetto and David A. Bader. “Scalable Graph Exploration on Multicore
Processors,” The 22nd IEEE and ACM Supercomputing Conference (SC10), New Orleans, LA, November
2010.
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