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Focus of this talk

� Successful programming models will help 
address challenges of petascale computing

� To address the issue we will look at 

� Hardware trends

� Application characteristics

� Programming models and Runtime 

� Promising ideas and technologies



Software for Petascale Systems

� To develop applications for solving 
grand challenge problems on 
petascale systems teams are 
required across different areas

� CS, Math

� Domain science

� Understanding of h/w and OS

� Team efforts

� The current leadership computing 
investments are in HARDWARE and 
not balanced in SOFTWARE efforts

� System and application software 
activities will require comparable or 
larger investments



Exploiting HPC architectures is becoming 
harder because of size and complexity of the 
systems and applications themselves

Hardware

Algorithms

Software

Success relies Success relies 
on coupling on coupling 
multiple areas multiple areas 
of science and of science and 
technologytechnology



There are many dependencies….
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• system arch.
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Key Challenges in Petascale Computing and 
Beyond

Massive number of components leads to 
more frequent hardware faults

Massive number of components leads to 
more frequent hardware faults

Single processor (socket) is now multicore and  
becoming heterogenous. Memory b/w shortage.  

Single processor (socket) is now multicore and  
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Fault Tolerance

Processor 
Performance

How can we adopt applications, algorithms and system
software to massive processor configurations?  

How can we adopt applications, algorithms and system
software to massive processor configurations?  

Scalability

Development of scalable, reliable, and efficient 
applications is becoming harder and more costly

Development of scalable, reliable, and efficient 
applications is becoming harder and more costly

Productivity

The cost of 20-30MW power for petascale systems
is already prohibitive

The cost of 20-30MW power for petascale systems
is already prohibitive

Power Management



Petascale Implies Massive Parallelism

T o p 5 systems o n T OP -500 list

0

20000

40000

60000

80000

100000

120000

140000

160000

199
2

199
3

199
4

199
5

199
6

199
7

199
8

199
9

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

year

n
u

m
b

er
 o

f 
p

ro
ce

ss
o

rs
M A X

M IN

0.1

1

10

100

1000

10000

100000

1000000

1978 1983 1988 1993 1998 2003 2008

P
er

fo
rm

an
ce

 [
G

F
L

O
P

S
]

Cray XMP

TMC CM-5

Cray 2

TMC CM-2

Cray T3D

IBM SP NEC ES

IBM Blue Gene

� Computational speed in last two 
decades
� 10,000 for single processor 

� One year vs one hour time to 
solution

� 40,000 for supercomputers
� Cray XMP in 1982 vs IBM BGL 

now

� Parallelism in leadership systems
� 4 CPU in Cray XMP in 1982
� 130,000 in the IBM BG/L in 2006

Moore’s Law

Peak Performance



Implications of Massive Parallelism

• Component count in high-end 
systems has been growing

• How do we utilize large (105

processor) systems for solving 
complex science problems? 

• Successful programming 
models must help address two 
challenges
– Scalability to massive 

processor counts
– Hardware and software 

failures
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Applications and Fault Tolerance

� Significant variability in application characteristics
� Multidisciplinary, multiresolution, and multiscale nature

� Increasingly differing demands on the system resources: 
disk, network, memory, CPU usage

� Some of them have natural fault resiliency and require 
very little support

� System Factors
� Different I/O configurations, programmable or 

simple/commodity NICs, proprietary/custom/commodity 
operating systems

� Tradeoffs between acceptable failure rates & cost
� Cost effectiveness is the main constraint in HPC

� Therefore, it is not cost-effective or practical to rely on a 

single fault tolerance approach for all applications and 

systems

Information Analytics
collective comms

Computational Biology
dynamic task model
shared database

Molecular Dynamics
state easily recomputed



Programming Models and FT methods

User-Transparent
Fault Tolerance

User-Transparent
Fault Tolerance

User-Coordinated
Fault Tolerance

User-Coordinated
Fault Tolerance

Data Checkpoint 

and Restart

Data Checkpoint 

and Restart
Algorithmic

FT Methods

Algorithmic

FT Methods
Transactional

Task Model

Transactional

Task Model
Job Checkpoint/

Migration/Restart

Job Checkpoint/

Migration/Restart

Common, costly
works in practice

See talk on malleable
apps at this conference

commercial world, 
fits some apps e.g., 
comp. proteomics

Very active research
primarily for MPI
Virtualization: Xen …

need Programming Model support

need Run Time support



Parallel Processing Enters Mainstream

� CMOS technology clock freq. limits 
due to the power dissipation 
(<10GHz)

� Moore Law gives us multiple-core 
processors

� Two-, four-, eight- cores now

� 16- up to 128- cores discussed

� Parallel processing became the
primary technique for accelerating 
performance on commodity 
computers
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From Multi- to Many-Core

� Multi-core (2-4 cores) designs dominate the 
commodity market and percolate into high-end 
systems

� Many-core (10s or 100+ cores) is emerging

� heterogenuity is a real possibility

� Examples
� Intel 80-core TeraScale chip & Larrabee chip

� IBM Cyclops-64 chip with 160 thread units

� ClearSpeed 96-core CSX chip

� NvidiaTesla products based on 128-core C870 GPU 
(0.5TFLOP)

IBM Cell



Future Multicore Systems Might Look Like 
the IBM Cyclops

• 160 hardware thread units
• three-level explicit memory hierarchy
• thread execution support

IBM Cyclops-64 Chip Architecture



Implications of Multicores

� To achieve performance on multi and many core 
systems for a single socket we rely on techniques 
reminiscent of traditional HPC

� Exploit concurrency at the algorithmic level

� Design efficient parallel algorithms

� Memory bandwidth (bytes/flop) is very limited 
and cannot be wasted

� Number of wires: IO is the true bottleneck

� “flops are free, bandwidth is expensive”

� Minimize inter-processor/core communication 
and synchronization



System Balance in Three Machine Generations 
Examples from PNNL
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Addressing System Imbalance

� Special efforts are needed to address performance 
constraints of the current technology

� Memory bandwidth is a big issue

� Emerging multicore systems have less b/w available than 
past Uni-processor and then SMP designs

� Both for local and remote memory

� How to reduce bandwidth usage  
� Avoid memory copies, packing/unpacking, etc 

� Smart data placement to reduce cost of data movement

� Shared memory within the node (cores and sockets) 

� Hiding cost of data transfer across the network

� Prefetching, overlapping communication with 
computations

� Some communication models more effective than othersL1
L2

L3

memory

1-
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10
c

50
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Interprocessor Communication

� How to transfer data between 
processors?
� Can be a key scalability 

bottleneck
� 1-sided models better at 

latency hiding

� Communication models 
assume certain hardware 
model

� Message-Passing (MPI) is 
based on the abstract 
machine model of 1980 
hardware
� uniprocessor nodes
� no virtual or shared memory
� no Remote Direct Memory 

Access (RDMA) h/w
capabilities

message passing
2-sided model

P1P0
receive send

BA

P1P0

put

remote memory access (RMA)
1-sided model

A B

P1P0

A=B

shared memory load/stores
0-sided model

A B

Communication Models
Example: Copy B on P1 to A on P0



Does MPI guarantee we get most efficient 
performance on modern hardware?

� Many believe it is not anymore

� Experiment: replace MPI with 
hardware native protocols
� Shared memory within SMP node

� RMA/RDMA between nodes

� Overlapping computations and comms

� Examples

� Dense parallel matrix multiplication

� Collective operations
New Algorithm (Linux Cluster)
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Performance and Productivity 
� Both determine the total cost of solution

� Focus on performance is obvious

� how effectively can we use the h/w?

� Productivity as a part of the cost

� the dramatic improvement in h/w cost 
effectiveness had limited effect on improving 
programmer productivity

� DARPA High Productivity Computing is 
pursuing a holistic approach

� Hardware

� System software

� Novel programming languages: Cray 
Chapel, IBM X10, Sun Fortress

� Requires vendors to analyze and present 
effectiveness for real science applications

Program  recognizes
software and hardware
must work together in 
integrated ways to achieve 
programmer productivity

HPCS Program Goals &
The HPCchallenge Benchmarks
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Parallel Programming Models

� How do we program the parallel machine?

� Single Execution Stream

� Data Parallel, e.g. HPF

� Multiple Execution Streams
� Partitioned-Local Data Access

� MPI

� Uniform-Global-Shared Data Access

� OpenMP

� Partitioned-Global-Shared Data Access

� Co-Array Fortran

� Uniform-Global-Shared + Partitioned Data Access

� UPC, Global Arrays, X10

GAS models 

{
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Example HPCS Languages: IBM X10

� A program is a collection of places, 
each containing resident data and a 

dynamic collection of activities. 

� Program may  distribute aggregate 
data (arrays) across places during 
allocation.

� Program may directly operate only 

on local data, using atomic blocks.

� Program may spawn multiple (local or 
remote) activities in parallel. 

� Program must use asynchronous 
operations to access/update remote 

data. 

� Program may detect termination or 
(repeatedly) detect quiescence of a 
data-dependent, distributed set of 
activities.

heap

stack

control

heap

stack

control

. . .

Activities &
Activity-local storage

Place-local heap

Partitioned Global heap

heap

stack

control

heap

stack

control

. . .

Place-local heap

Partitioned Global heap

Outbound 
activities

Inbound 
activities

Outbound 
activity
replies

Inbound 
activity 
replies

. . .

Place Place

Activities &
Activity-local storage

Immutable Data

Granularity of 
place can range 
from single 
register file to an 
entire SMP system

Credit: Vijay Saraswat, IBM



Global Arrays Toolkit delivers global 
address space abstractions as a library

� Works with MPI
� Multilanguage bindings
� Implemented using ARMCI one-

sided communication library
� Optimized for shared memory and 

RDMA protocols 
� Zero-copy communication

� GA is the most mature alternative 
to MPI and OpenMP standard 
programming models
� Multiple application areas
� Production use

� Extensive functionality: >150 calls
� Logically shared view of distributed 

data, yet data locality control 
similar to MPI model
� Every piece of shared data has a 

logical home
� User can control and exploit locality 

when needed, ignore in other cases

single, shared data structure/ global 
indexing e.g., A(4,3) rather than 

buf(7) on task 2

physically distributed data



NAS CG Benchmark

� MPI implementation 
is very good and 
hard to outperform
� ZPL, OpenMP, CAF, 

HPF

� GA implementation 
exploits:
� Locality+ machine 

topology

� shared memory 
(direct access 
load/stores)

� nonblocking RDMA
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Characteristics of Programming Models

 Shared 
memory 

Message 
Passing 
2-sided 

Message 
passing 
1-sided 

Global Address 
Space 

Data view shared distributed distributed distributed or shared 

Access to data simplest 
(a=b) 

hard 
(send-receive) 

moderate 
(put/get) 

simple 
 

Data locality 
information 

obscure explicit explicit available 
 

Scalable 
performance 

limited very good very good  varies 

 

Note: 1-sided MPI-2 is one of several and not highest 
performing instance of 1-sided message passing



TCE

GA

OpenMP

Auto-parallelized
C/Fortran90
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Holy Grail for Programming Models 
Generality/Abstraction/Scalability

“Holy Grail”



Towards Holy Grail

� Research, software product, users

� Basic research beyond DARPA HPCS effort needed 

� The current efforts vendor centric, too short term

� Recognize differences between Model and 
Implementation

� To deliver production quality adequate level of 
funding is required to deliver optimal performance

� Intel example: 4,000 people working on compilers 
and related s/w tools

� Compare against DARPA HPCS language teams with 
handful people involved



From Programming Models to Component Software

� Complexity of scientific software increases with 
simulation fidelity, multi-physics coupling, computer 
power 

� Applications increasingly often adopt modular design 
with modules (components) written using different 
languages and programming models 

� The Common Component Architecture 
(CCA) brings component software 
approach scientific HPC 
� DoE Scidac project

CCA
Common Component Architecture



Components Software 

� Components represent reusable chunk of software

� Inside: private implementation development details

� Outside: publicly accessible functionality (i.e. interfaces)

� Enforces discipline/
responsibility 
boundaries

� “Firewalls” code, 
enables easy 
replacement

� Helps to deal with

heterogenous h/w

including acclerators

Component-Based Application



CCA on Heterogenous Systems

• With CCA we can build reusable h/w-accelerated 
components that encapsulate common scientific 
algorithms

• HPC computers with hardware accelerators 
connected via a high-speed interconnect:

• Field Programmable Gate Array (FPGA), 
Clearspeed, GCPU, Cell

• Example: proposed LANL IBM Thunder system

• Application accelerator services to accelerate 
application performance on hybrid or 
heterogeneous architectures

• Working with proteomics application Polygraph that 
uses FPGA computes a “spectral fingerprints”

• CCA Event service used for linking components on 
general purpose CPU and FPGA



Application Frameworks:
NWChem Example

� A major scalable chemistry package developed 10y ago

� 1.5million lines of code in NWChem

� Development from scratch of a large software suite

� Primary focus on MPP platforms required addressing
� Scalability

� At that time most computational chemistry packages used 
replicated data structures and algorithms with limited scaling

� Productivity 
� Shortage of highly skilled system experts

� Developers were chemistry scientists at lab and collaborating 
universities, postdocs, students not skilled in HPC

� CS and domain scientists working together

� Decision was to pursue approach much different from 
ASCI software development model (i.e., based on 
MPI/OpenMP standards and laborious effort) 
� Develop parallel framework and abstractions in support of 

domain algorithms: MA, GA, DRA, RTDB

� Ease of use and high productivity
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Final Thoughts

� Changes of hardware and applications ask for 
advancement of programming models

� Fault tolerance, scalability, system balance, …

� Research opportunities 
� Should be a part of future US, EU investments in 
software discussed recently

� Application Frameworks combined with Component 
Software technology can deliver
� High-level abstractions 

� Hide implementation and h/w complexities

� Concerted multidisciplinary team effort is needed 
to achieve science goals for petascale systems
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