
Programming Models
For Petascale Era

Jarek Nieplocha
Laboratory Fellow, Chief Scientist

Computational Science and Mathematics

Pacific Northwest National Laboratory

Washington State University

Focus of this talk

� Successful programming models will help
address challenges of petascale computing

� To address the issue we will look at

� Hardware trends

� Application characteristics

� Programming models and Runtime

� Promising ideas and technologies

Software for Petascale Systems

� To develop applications for solving
grand challenge problems on
petascale systems teams are
required across different areas

� CS, Math

� Domain science

� Understanding of h/w and OS

� Team efforts

� The current leadership computing
investments are in HARDWARE and
not balanced in SOFTWARE efforts

� System and application software
activities will require comparable or
larger investments

Exploiting HPC architectures is becoming
harder because of size and complexity of the
systems and applications themselves

Hardware

Algorithms

Software

Success relies Success relies
on coupling on coupling
multiple areas multiple areas
of science and of science and
technologytechnology

There are many dependencies….

Hardware
• system arch.
• processor arch.
• h/w accelerators
• memory b/w
• interconnect b/w
• secondary storage
• reliability

Hardware
• system arch.
• processor arch.
• h/w accelerators
• memory b/w
• interconnect b/w
• secondary storage
• reliability

Algorithms
•scalable
•resource efficient
•comp. complexity
•data decomposition
•locality space/time
•load balancing
•multiple levels of
parallelism

Algorithms
•scalable
•resource efficient
•comp. complexity
•data decomposition
•locality space/time
•load balancing
•multiple levels of
parallelism

Software
•scalable OS
•programming model
•portability
•communication libs
•numerical libraries
•compilers
•debuggers

Software
•scalable OS
•programming model
•portability
•communication libs
•numerical libraries
•compilers
•debuggers

Key Challenges in Petascale Computing and
Beyond

Massive number of components leads to
more frequent hardware faults

Massive number of components leads to
more frequent hardware faults

Single processor (socket) is now multicore and
becoming heterogenous. Memory b/w shortage.

Single processor (socket) is now multicore and
becoming heterogenous. Memory b/w shortage.

Fault Tolerance

Processor
Performance

How can we adopt applications, algorithms and system
software to massive processor configurations?

How can we adopt applications, algorithms and system
software to massive processor configurations?

Scalability

Development of scalable, reliable, and efficient
applications is becoming harder and more costly

Development of scalable, reliable, and efficient
applications is becoming harder and more costly

Productivity

The cost of 20-30MW power for petascale systems
is already prohibitive

The cost of 20-30MW power for petascale systems
is already prohibitive

Power Management

Petascale Implies Massive Parallelism

T o p 5 systems o n T OP -500 list

0

20000

40000

60000

80000

100000

120000

140000

160000

199
2

199
3

199
4

199
5

199
6

199
7

199
8

199
9

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

year

n
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
M A X

M IN

0.1

1

10

100

1000

10000

100000

1000000

1978 1983 1988 1993 1998 2003 2008

P
er

fo
rm

an
ce

 [
G

F
L

O
P

S
]

Cray XMP

TMC CM-5

Cray 2

TMC CM-2

Cray T3D

IBM SP NEC ES

IBM Blue Gene

� Computational speed in last two
decades
� 10,000 for single processor

� One year vs one hour time to
solution

� 40,000 for supercomputers
� Cray XMP in 1982 vs IBM BGL

now

� Parallelism in leadership systems
� 4 CPU in Cray XMP in 1982
� 130,000 in the IBM BG/L in 2006

Moore’s Law

Peak Performance

Implications of Massive Parallelism

• Component count in high-end
systems has been growing

• How do we utilize large (105

processor) systems for solving
complex science problems?

• Successful programming
models must help address two
challenges
– Scalability to massive

processor counts
– Hardware and software

failures
1000 10000 100000

System Size (number of nodes)

0

20

40

60

80

100

120

140

160

M
T

B
F

 (
h

o
u

rs
)

10,000
100,000
1,000,000

TeraFLOPS

PetaFLOPS

Mean Time Between Failure (MTBF)
as a function of system size

Petascale+

Applications and Fault Tolerance

� Significant variability in application characteristics
� Multidisciplinary, multiresolution, and multiscale nature

� Increasingly differing demands on the system resources:
disk, network, memory, CPU usage

� Some of them have natural fault resiliency and require
very little support

� System Factors
� Different I/O configurations, programmable or

simple/commodity NICs, proprietary/custom/commodity
operating systems

� Tradeoffs between acceptable failure rates & cost
� Cost effectiveness is the main constraint in HPC

� Therefore, it is not cost-effective or practical to rely on a

single fault tolerance approach for all applications and

systems

Information Analytics
collective comms

Computational Biology
dynamic task model
shared database

Molecular Dynamics
state easily recomputed

Programming Models and FT methods

User-Transparent
Fault Tolerance

User-Transparent
Fault Tolerance

User-Coordinated
Fault Tolerance

User-Coordinated
Fault Tolerance

Data Checkpoint

and Restart

Data Checkpoint

and Restart
Algorithmic

FT Methods

Algorithmic

FT Methods
Transactional

Task Model

Transactional

Task Model
Job Checkpoint/

Migration/Restart

Job Checkpoint/

Migration/Restart

Common, costly
works in practice

See talk on malleable
apps at this conference

commercial world,
fits some apps e.g.,
comp. proteomics

Very active research
primarily for MPI
Virtualization: Xen …

need Programming Model support

need Run Time support

Parallel Processing Enters Mainstream

� CMOS technology clock freq. limits
due to the power dissipation
(<10GHz)

� Moore Law gives us multiple-core
processors

� Two-, four-, eight- cores now

� 16- up to 128- cores discussed

� Parallel processing became the
primary technique for accelerating
performance on commodity
computers

Maximum Intel Processor Operating
Frequency

0

1

2

3

4

5

6

1997 1998 1999 2000 2001 2002 2003 2004 2005

Year Introduced

F
re

q
u
n
cy

 (
G

H
z)

Maximum Intel Processor Operating
Frequency

0

1

2

3

4

5

6

1997 1998 1999 2000 2001 2002 2003 2004 2005

Year Introduced

F
re

q
u
n
cy

 (
G

H
z)

8-core Sun Niagara

From Multi- to Many-Core

� Multi-core (2-4 cores) designs dominate the
commodity market and percolate into high-end
systems

� Many-core (10s or 100+ cores) is emerging

� heterogenuity is a real possibility

� Examples
� Intel 80-core TeraScale chip & Larrabee chip

� IBM Cyclops-64 chip with 160 thread units

� ClearSpeed 96-core CSX chip

� NvidiaTesla products based on 128-core C870 GPU
(0.5TFLOP)

IBM Cell

Future Multicore Systems Might Look Like
the IBM Cyclops

• 160 hardware thread units
• three-level explicit memory hierarchy
• thread execution support

IBM Cyclops-64 Chip Architecture

Implications of Multicores

� To achieve performance on multi and many core
systems for a single socket we rely on techniques
reminiscent of traditional HPC

� Exploit concurrency at the algorithmic level

� Design efficient parallel algorithms

� Memory bandwidth (bytes/flop) is very limited
and cannot be wasted

� Number of wires: IO is the true bottleneck

� “flops are free, bandwidth is expensive”

� Minimize inter-processor/core communication
and synchronization

System Balance in Three Machine Generations
Examples from PNNL

2.5

0.075

0.75

1MB

12

6.0

2

IA-64
$20K/node

2003

HP/QSNet2

340MPI latency (microsec)

0.0270.17Network B/F (unidirectional)

0.44.2Memory B/F (bytes /flops)

4MB128KBCache size

480.48Peak node performance
(Gflops)

12 x 2 0.48Peak processor performance
(Gflops)

2 dual cores1Number of processors/node

Intel Woodcrest
$6K/node

IBM P2SC
$40K/node

Processor

Cost including network

20061996Year

Dell 1950/IBAIBM SP

Addressing System Imbalance

� Special efforts are needed to address performance
constraints of the current technology

� Memory bandwidth is a big issue

� Emerging multicore systems have less b/w available than
past Uni-processor and then SMP designs

� Both for local and remote memory

� How to reduce bandwidth usage
� Avoid memory copies, packing/unpacking, etc

� Smart data placement to reduce cost of data movement

� Shared memory within the node (cores and sockets)

� Hiding cost of data transfer across the network

� Prefetching, overlapping communication with
computations

� Some communication models more effective than othersL1
L2

L3

memory

1-
2c

10
c

50
c

50
0c

Interprocessor Communication

� How to transfer data between
processors?
� Can be a key scalability

bottleneck
� 1-sided models better at

latency hiding

� Communication models
assume certain hardware
model

� Message-Passing (MPI) is
based on the abstract
machine model of 1980
hardware
� uniprocessor nodes
� no virtual or shared memory
� no Remote Direct Memory

Access (RDMA) h/w
capabilities

message passing
2-sided model

P1P0
receive send

BA

P1P0

put

remote memory access (RMA)
1-sided model

A B

P1P0

A=B

shared memory load/stores
0-sided model

A B

Communication Models
Example: Copy B on P1 to A on P0

Does MPI guarantee we get most efficient
performance on modern hardware?

� Many believe it is not anymore

� Experiment: replace MPI with
hardware native protocols
� Shared memory within SMP node

� RMA/RDMA between nodes

� Overlapping computations and comms

� Examples

� Dense parallel matrix multiplication

� Collective operations
New Algorithm (Linux Cluster)

0

50

100

150

200

250

300

350

0 32 64 96 128

processors

G
F

L
O

P
/s

600

1000

2000

4000

8000

12000

ScaLAPACK (Linux Cluster)

0

50

100

150

200

250

300

350

0 32 64 96 128
processors

G
F

L
O

P
/s

600

1000

2000

4000

8000

12000

SRUMMA paper at IPDPS’04

0

10

20

30

40

50

60

70

80

90

bcast reduce allreduce barrier

%
 im

p
ro

ve
m

en
t o

ve
r

M
P

I

max
avg
min

dense matrix multiplication
aggregate performance

see paper at IPDPS’03 by Tipparaju, Nieplocha, Panda

collective operations on IBM SP

PDGEMM based on MPI

SRUMMA based on SHM/RMA

Performance and Productivity
� Both determine the total cost of solution

� Focus on performance is obvious

� how effectively can we use the h/w?

� Productivity as a part of the cost

� the dramatic improvement in h/w cost
effectiveness had limited effect on improving
programmer productivity

� DARPA High Productivity Computing is
pursuing a holistic approach

� Hardware

� System software

� Novel programming languages: Cray
Chapel, IBM X10, Sun Fortress

� Requires vendors to analyze and present
effectiveness for real science applications

Program recognizes
software and hardware
must work together in
integrated ways to achieve
programmer productivity

HPCS Program Goals &
The HPCchallenge Benchmarks

High
Low

Low

PTRANS

FFT

Mission
Partner

Applications

S
pa

tia
l L

oc
al

ity

Temporal Locality

RandomAccess

STREAMHPL

High
High

Low

Low

PTRANS

FFT

Mission
Partner

Applications

S
pa

tia
l L

oc
al

ity

Temporal Locality

RandomAccess

STREAMHPL

High

Parallel Programming Models

� How do we program the parallel machine?

� Single Execution Stream

� Data Parallel, e.g. HPF

� Multiple Execution Streams
� Partitioned-Local Data Access

� MPI

� Uniform-Global-Shared Data Access

� OpenMP

� Partitioned-Global-Shared Data Access

� Co-Array Fortran

� Uniform-Global-Shared + Partitioned Data Access

� UPC, Global Arrays, X10

GAS models

{

21

Example HPCS Languages: IBM X10

� A program is a collection of places,
each containing resident data and a

dynamic collection of activities.

� Program may distribute aggregate
data (arrays) across places during
allocation.

� Program may directly operate only

on local data, using atomic blocks.

� Program may spawn multiple (local or
remote) activities in parallel.

� Program must use asynchronous
operations to access/update remote

data.

� Program may detect termination or
(repeatedly) detect quiescence of a
data-dependent, distributed set of
activities.

heap

stack

control

heap

stack

control

. . .

Activities &
Activity-local storage

Place-local heap

Partitioned Global heap

heap

stack

control

heap

stack

control

. . .

Place-local heap

Partitioned Global heap

Outbound
activities

Inbound
activities

Outbound
activity
replies

Inbound
activity
replies

. . .

Place Place

Activities &
Activity-local storage

Immutable Data

Granularity of
place can range
from single
register file to an
entire SMP system

Credit: Vijay Saraswat, IBM

Global Arrays Toolkit delivers global
address space abstractions as a library

� Works with MPI
� Multilanguage bindings
� Implemented using ARMCI one-

sided communication library
� Optimized for shared memory and

RDMA protocols
� Zero-copy communication

� GA is the most mature alternative
to MPI and OpenMP standard
programming models
� Multiple application areas
� Production use

� Extensive functionality: >150 calls
� Logically shared view of distributed

data, yet data locality control
similar to MPI model
� Every piece of shared data has a

logical home
� User can control and exploit locality

when needed, ignore in other cases

single, shared data structure/ global
indexing e.g., A(4,3) rather than

buf(7) on task 2

physically distributed data

NAS CG Benchmark

� MPI implementation
is very good and
hard to outperform
� ZPL, OpenMP, CAF,

HPF

� GA implementation
exploits:
� Locality+ machine

topology

� shared memory
(direct access
load/stores)

� nonblocking RDMA

0

1

10

100

1000

1 2 4 8 16 32

Number of Processes

T
im

e
(s

ec
on

ds
)

MPI - Class A

GA - Class A

MPI - Class B

GA - Class B

MPI - Class C

GA - Class C

0.1

1

10

100

1000

10000

1 2 4 8 16 32 64

Number of Processes

T
im

e
(s

ec
on

ds
)

MPI - Class A

GA - Class A

MPI - Class B

GA - Class B

MPI - Class C

GA - Class C

SGI Altix

Linux
Cluster

Characteristics of Programming Models

 Shared
memory

Message
Passing
2-sided

Message
passing
1-sided

Global Address
Space

Data view shared distributed distributed distributed or shared

Access to data simplest
(a=b)

hard
(send-receive)

moderate
(put/get)

simple

Data locality
information

obscure explicit explicit available

Scalable
performance

limited very good very good varies

Note: 1-sided MPI-2 is one of several and not highest
performing instance of 1-sided message passing

TCE

GA

OpenMP

Auto-parallelized
C/Fortran90

PETSc

MPI

Generality

Ab
st

ra
ct

io
n

S
ca

la
bi

lit
y

Holy Grail for Programming Models
Generality/Abstraction/Scalability

“Holy Grail”

Towards Holy Grail

� Research, software product, users

� Basic research beyond DARPA HPCS effort needed

� The current efforts vendor centric, too short term

� Recognize differences between Model and
Implementation

� To deliver production quality adequate level of
funding is required to deliver optimal performance

� Intel example: 4,000 people working on compilers
and related s/w tools

� Compare against DARPA HPCS language teams with
handful people involved

From Programming Models to Component Software

� Complexity of scientific software increases with
simulation fidelity, multi-physics coupling, computer
power

� Applications increasingly often adopt modular design
with modules (components) written using different
languages and programming models

� The Common Component Architecture
(CCA) brings component software
approach scientific HPC
� DoE Scidac project

CCA
Common Component Architecture

Components Software

� Components represent reusable chunk of software

� Inside: private implementation development details

� Outside: publicly accessible functionality (i.e. interfaces)

� Enforces discipline/
responsibility
boundaries

� “Firewalls” code,
enables easy
replacement

� Helps to deal with

heterogenous h/w

including acclerators

Component-Based Application

CCA on Heterogenous Systems

• With CCA we can build reusable h/w-accelerated
components that encapsulate common scientific
algorithms

• HPC computers with hardware accelerators
connected via a high-speed interconnect:

• Field Programmable Gate Array (FPGA),
Clearspeed, GCPU, Cell

• Example: proposed LANL IBM Thunder system

• Application accelerator services to accelerate
application performance on hybrid or
heterogeneous architectures

• Working with proteomics application Polygraph that
uses FPGA computes a “spectral fingerprints”

• CCA Event service used for linking components on
general purpose CPU and FPGA

Application Frameworks:
NWChem Example

� A major scalable chemistry package developed 10y ago

� 1.5million lines of code in NWChem

� Development from scratch of a large software suite

� Primary focus on MPP platforms required addressing
� Scalability

� At that time most computational chemistry packages used
replicated data structures and algorithms with limited scaling

� Productivity
� Shortage of highly skilled system experts

� Developers were chemistry scientists at lab and collaborating
universities, postdocs, students not skilled in HPC

� CS and domain scientists working together

� Decision was to pursue approach much different from
ASCI software development model (i.e., based on
MPI/OpenMP standards and laborious effort)
� Develop parallel framework and abstractions in support of

domain algorithms: MA, GA, DRA, RTDB

� Ease of use and high productivity

R
un

-t
im

e
da

ta
ba

se

DFT energy, gradient,
…

MD, NMR, Solvation, …

Optimize, Dynamics, …

SCF energy, gradient, …

In
te

gr
al

 A
P

I

G
eo

m
et

ry
 O

bj
ec

t

B
as

is
 S

et
 O

bj
ec

t

...P
eI

G
S

...

Global Arrays

Memory Allocator

Parallel IO

Molecular
Modeling
Toolkit

Molecular
Calculation

Modules

Molecular
Software

Development
Toolkit

Generic
TasksEnergy, structure, …

Final Thoughts

� Changes of hardware and applications ask for
advancement of programming models

� Fault tolerance, scalability, system balance, …

� Research opportunities
� Should be a part of future US, EU investments in
software discussed recently

� Application Frameworks combined with Component
Software technology can deliver
� High-level abstractions

� Hide implementation and h/w complexities

� Concerted multidisciplinary team effort is needed
to achieve science goals for petascale systems

Acknowledgments

� US DoE Office of Advanced Scientific
Computing Research (ASCR) Funding

� Programming Models for Scalable Parallel
Computing

� Scidac CCA project

� FASTOS Scalable Fault Tolerance project

