
New Data Structures for the Cell Processor

Fred Gustavson – Jerzy Wasniewski

IBM Thomas J. Watson Research Center – Informatics and Mathematical Modelling, DTU

This Work Shop has Seven Parts

Part 1: Blocking and New Generalized Data Structures (NDS)

The aim is to obtain very high performance dense linear algebra algorithms on Cell.
“Cache Blocking”is still key. The Algorithms and Architecture Approach leads to the
use of NDS and kernels for DLA (Dense Linear Algebra) Factorization algorithms. It will
be shown that all DLAFA (Dense Linear Algebra Factorization Algorithms) are almost
all matrix multiply algorithms. DGEMM (General Matrix Matrix Multiplication) is
flawed as its API uses standard CM (Column Major) / RM (Row Major) array formats
of Fortran and C. NDS overcomes the flaw. A paper of Jack Dongarra’s team states that
use of NDS is the key factor for getting performance on Cell for the Linpack Benchmark.

Part 2: One, two, three & Higher Dimensions

Matrices are two dimensional objects. Fortran and C store matrices in one dimensional
arrays. The main theorem of Dimension Theory proved by LEJ Brouwer in 1913 states
that representing a 2-D matrix as a 1-D object will not preserve closeness of sub-matrix
elements. NDS does this.

Part 3: Block In-place Transpose of a Rectangular Matrix

In-place transposition was an active research area in the late 1950’s to the middle 1970’s.
Gustavson began to study this problem anew in relation to New Data Structures (NDS)
for Dense Linear Algebra (DLA). The new results give fast algorithms for in-place trans-
position in particular as well as in-place data transformations in general. These new fast
algorithms incorporate “cache blocking”and NDS as their major high performance com-
ponents.

Part 4: Basic Cell Architecture

The Cell architecture grew from a challenge posed by Sony and Toshiba to provide
power-efficient and cost-effective high-performance processing for a wide range of appli-
cations, including the most demanding consumer appliance: game consoles. Cell - also
known as the Cell Broadband Engine Architecture (CBEA) - is an innovative solution
whose design was based on the analysis of a broad range of workloads in areas such as
cryptography, graphics transform and lighting, physics, fast-Fourier transforms (FFT),
matrix operations and scientific workloads.



Cell is a heterogeneous chip multiprocessor that consists of an IBM 64-bit Pow-
er Architecture core, augmented with eight specialized co-processors based on a novel
single-instruction multiple-data (SIMD) architecture called Synergistic Processor Unit
(SPU), which is for data-intensive processing, like that found in cryptography, media
and scientific applications. The system is integrated by a coherent on-chip bus.

Part 5: Matrix Multiply On Cell

Based on Part 1, we need to consider matrix multiply on Cell if we want to be able to
do Dense Linear Algebra Factorization Algorithms on Cell. A novel of feature of Cell
allows one to overlap “communication with computation”. An old result of Agarwal,
Gustavson and Zubair in 1993 showed that this feature always led to perfect speed-up
for distributed memory computing matrix multiplication. Thus, it turns out that matrix
mutiplication on Cell can be done at the peak GFlop rate of Cell.

Part 6: A Cholesky Factorization on Cell

This lecture reviews a paper on Cholesky Factorization on Cell by Kurzak, Buttari and
Dongarra (Lapack Working Note 184). Also, improvements and relationships between
this paper and Gustavson’s research with Ume̊a and UNI•C / IMM over the last ten
years is discussed.

Part 7: Three versions of High Performance Minimal Storage Cholesky Algo-
rithm which uses New Data Structures: Recursion, Rectangular Full Packed
(RFP), and Block Packed Hybrid Formats

We describe new data formats for storing triangular, symmetric, and Hermitian matrices.
The standard two dimensional arrays of Fortran and C (also known as full format) that
are used to store triangular, symmetric, and Hermitian matrices waste nearly half the
storage space but provide high performance via the use of level 3 BLAS. Standard packed
format arrays fully utilize storage (array space) but provide low performance as there
are no level 3 packed BLAS.

We combine the good features of packed and full storage using the new formats to
obtain high performance using (level 3) BLAS. Also, these new formats require exactly
the same minimal storage as LAPACK packed format. These new formats even outper-
form the LAPACK full format for some computer platforms. The Block Packed Hybrid
Format works well for multi-core processors.


