
The Relevance of New Data Structures for The Relevance of New Data Structures for
Dense Linear Algebra in the new MultiDense Linear Algebra in the new Multi--Core / Core /
Multi Core EnvironmentsMulti Core Environments

Fred Gustavson
IBM T.J. Watson Rearch Center
Yorktown Heights, NY
E-mail: fg2@us.ibm.com

PPAM Invited TalkPPAM Invited Talk
Gdansk, PolandGdansk, Poland
September 10, 2007September 10, 2007

Fundamental "Triangle"Fundamental "Triangle"

A

H C

A: Algorithms
H: Hardware
C: Compilers

Algorithm and ArchitectureAlgorithm and Architecture

The key to performance is to understand the
algorithm and architecture interaction.
A significant improvement in performance can
be obtained by matching the algorithm to the
architecture or vice-versa.
A cost-effective way of providing a given level of
performance.
Multi-core puts more of the burden on the
algorithm part of the triangle
Especially hard for the designers of Library
Software

ArchitectureArchitecture

ƒFloating point arithmetic is done in the L0 cache
ƒ2-D Fortran and C arrays do NOT map well into
the L1 and L0 caches (this combo is a core)

The best case happens when the array is
contiguous and aligned properly
Need at least a 3 way set associative L1 cache

ƒFloating point data must be in the L0 cache for
peak performance to occur

Multiple reuse amortizes the cost of bringing
an operand to the L1 / L0 caches or core / FPU
Multiple reuse only happens well when all

operands map well into L1 / L0 or core / FPU

Dense Linear AlgebraDense Linear Algebra

ƒSome scalar a(i,j) algorithms have square
submatrix A(I:I+NB-1,J:J+NB-1) algorithms

LAPACK library
Golub and Van Loan’s book

ƒSome square submatrices are both contiguous
and fit into a L1 cache or core

ƒDense Matrix factorization is a level 3
computation

Series of submatrix computations
All submatrix computations are level 3
In level 3 computations each matrix operand is

used multiple times

Basic Algorithm ChangeBasic Algorithm Change

ƒ Map the input Fortran / C 2-D array (matrix A)
to a set of contiguous submatrices that each fit
into a L1 cache or core
ƒNew Data Structures

ƒApply the appropriate submatrix algorithm
A series of level 3 computations whose

operands are contiguous submatrices each
fitting into the L1 cache and able to enter L0 or
core and FPU in an optimal seamless manner

FMA InstructionFMA Instruction

Basic Instruction of Engineering/Scientific
Computation

ƒD = C + A * B
ƒBasic instruction of Linear Algebra

ƒElementary operations and the concept of
equivalence

Key concept of linear algebra
Adding a multiple of one row (column) to another
row (column) or SIMD vector FMA
Ax = b if and only if Ux = L-1 b
Above is a series of independent FMAs

BlockingBlocking

ƒTLB Blocking -- minimize TLB misses
ƒCache Blocking -- minimize cache misses
ƒRegister Blocking -- minimize load/stores

The general idea of blocking is to get the information to a high-speed storage
and use it multiple times so as to amortize the cost of moving the data.

Cache Blocking -- Reduces traffic between memory and cache
Register Blocking -- Reduces traffic between cache and CPU
TLB Blocking – Covers the current working set of a problem

Some Facts on Cache BlockingSome Facts on Cache Blocking

ƒ A very important algorithmic technique
ƒFirst used by ESSL and the Cedar Project
ƒCray 2 was impetus for Level 3 BLAS
ƒMulti-core may modify the L3 BLAS standard
ƒThe gap between memory speed and many
fast cores is too great to allow the current
standard to be viable

Block Column Major OrderBlock Column Major Order

0 5 10 15 20 25 30

1 6 11 16 21 26 31

2 7 12 17 22 27 32

3 8 13 18 23 28 33

4 9 14 19 24 29 34

A =

ƒ A has 500 rows and 700 columns
ƒ Each block i, 0 <= i < 35 has size 100 by 100
ƒ Block i is located at 10000 i

Square Blocked Lower Packed FormatSquare Blocked Lower Packed Format

0
1 8
2 9 15
3 10 16 21
4 11 17 22 26
5 12 18 23 27 30
6 13 19 24 28 31 33
7 14 20 25 29 32 34 35

A =

ƒ A is symmetric and has order 800
ƒ Each block i, 0 <= i < 36 has order 100 by 100
ƒ Block i is located at 10000 i

Blocked MatBlocked Mat--Mult is OptimalMult is Optimal

Theorem:
Any algorithm that computes

a (i, k) * b (k, j) for all 0<i, j, k< n+1
must transfer between memory and an M-word cache

(n3 / M) words if M < n2 / 5.

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

• Principle of Equivalence in Linear Algebra
• Instead of performing Gaussian Elimination do the
same thing : perform N linear transformations on A
to get an equivalent matrix U.
• Conclude: Instead of a collection of Factorization
Algorithms one now has a single procedure of just
applying linear transformations.

Ax = b if and only if Ax = b if and only if UxUx = L= L--11bb

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

Matrix Multiplication is PervasiveMatrix Multiplication is Pervasive

Let R and S be linear transformations
Let T = S (R) be linear
Let R and S have basis vectors
The basis for T, in terms of R and S bases, defines
matrix multiplication
The definition is due to Arthur Cayley the man who
invented matrices

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

Summary of Last Three SlidesSummary of Last Three Slides

Sketch of a proof that matrix factorization is almost
all matrix multiplication
a) Perform n = N/NB rank NB linear transformations
on A to get say U; here PA=LU
b) Each of these n composed NB linear
transformations is matrix multiply by definition
c) These n transformations preserve the solution
properties of Ax = b if and only if Ux = L-1b by the
principle of equivalent matrices

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

Blocked Based Algorithms a la LAPACKBlocked Based Algorithms a la LAPACK

N coordinate transformations represented as n = N/NB
composed rank NB coordinate transformations
View as a series of kernel algorithms
ƒc(i, j)=c(i, j) - a(i, k)*b(k, j) : GEMM, SYRK
ƒb(i, j)=b(i, j)/a(j, j) : TRSM
ƒL*U=P*A : Factor Kernel
ƒL*LT=A : Cholesky Kernel
ƒQ*R=A : QR Kernel

LAPACK treats factor kernels as a series of NB level two
operations
Factor kernels can usually be written as level 3 kernels
ƒRecursion is helpful
ƒRegister based programming

Square Blocked Packed Cholesky vs. DPOTRF
Run on 200 MHz Power3 (Peak 800 Mflops)

10
1

10
2

10
3

0

100

200

300

400

500

600

700

800

matrix order N

M
F

lo
ps

[Square Blocked Packed Cholesky , DPOTRF] vs.N

Blocked Hybrid Cholesky vs. DPOTRF and DPPTRF
Run on 200 MHz Power3 (Peak 800 Mflops)

10
1

10
2

10
3

0

100

200

300

400

500

600

700

800

 matrix order N

 M
F

lo
ps

[BHC , BHC + data transformation , DPOTRF , DPPTRF] vs. N

Challenge of Machine Independent Design of Challenge of Machine Independent Design of
Dense Linear Algebra Codes via the BLASDense Linear Algebra Codes via the BLAS

Currently done via the BLAS
ƒComputer manufacturers supply high performance
BLAS

ƒA dense linear algebra algorithm and its calls to BLAS
are related

Examples
ƒCholesky; all matrix operands to DTRSM, DSYRK,
and hence DGEMM are submatrices of A.

ƒGeneral Matrix Factor, QR factor,..., : the same is true
as for Cholesky.

These examples suggest a general pattern.

Challenge of Machine Independent Design of Challenge of Machine Independent Design of
Dense Linear Algebra Codes via the BLASDense Linear Algebra Codes via the BLAS

Every Dense Linear Algebra Algorithm calls the
BLAS several times. Every one of the multiple
BLAS calls has all of its matrix operands equal to
the submatrices of the matrices, A, B, ... of the
dense linear algebra algorithm.

Can this apparent general truth be exploited?

Can We Exploit This General Relationship?Can We Exploit This General Relationship?

What do the current BLAS do?
ƒThey try to exploit architecture design while
maintaining functionality of the BLAS

Take Level 3 BLAS:
ƒFactorization algorithms are level 3 algorithms
ƒData operands are copied to achieve cache
blocking with minimal L1, L2 and TLB misses

ƒReason for level 3 BLAS
Repeated calls to BLAS 3 require that multiple
data copying be done

ƒOn operands that are related

Can We Exploit This General Relationship?Can We Exploit This General Relationship?

An answer: change the data structure of the
input matrices!

Change must reflect what the BLAS does
repetitively.

ƒStore matrix as aligned contiguous BLOCKS
How are the BLOCKS to be stored?

ƒBLOCK ROW
ƒBLOCK COLUMN
ƒ other but still contiguous

ChangesChanges

ƒDense Linear Algorithm Code Change
Changes are minor
Current codes are currently blocked based

ƒBLAS Code Changes
No data copy
Codes become simpler
Higher performance

ƒOverall performance of Dense Linear Algorithm
Codes improve.

Application of LU=PA on CellApplication of LU=PA on Cell

ƒ Apply the Algorithm and Architecture Approach
Fast single precision unit
Use iterative refinement

Work of Jack Dongarra’s team at Univ. Tenn.
Linpack Benchmark LU = PA
Iterative refinement is O(N2)
Factorization is O(N3)
Use extra storage of a factor of 1.5 times 2
Use of BDL was deemed crucial

ƒOverlapping computation with communication is
an architectural feature of the Cell processor

Look ahead Idea for FactorizationLook ahead Idea for Factorization

ƒ Overlap Schur Complement Update aka matrix
multiplication with the previous factor step

ƒ PA = (L1U1)(L2U2)…Ln = L1(U1L2)…(Un-1Ln)
ƒL part is factor and scale and U part is SC update

factor step provide the A and B operands of the
update GEMM part
with this use of the associative law the A & B of

parts of GEMM is done early aka lookahead
factorization is almost 100% Update
makes factorization almost perfectly parallel

Block Data LayoutBlock Data Layout

ƒ Block Data Layout is another name for Square
Block Format which we described in this talk

ƒ Design of LU = PA for the Cell processor
ƒ Quotes from Jack Dongarra’s et. al. paper

“most important one is block layout”
“unlikely that data layout can be hidden within

the BLAS”
“how should block layout be exposed to the

user”

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

Thank You!Thank You!

