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OutlineOutline

• Top500 Resultsp
• Four Important Concepts that Will 

Effect Math SoftwareEffect Math Software
Effective Use of Many-Core
Exploiting Mixed Precision in Our Exploiting Mixed Precision in Our 
Numerical Computations
Self Adapting / Auto Tuning of SoftwareSelf Adapting / Auto Tuning of Software
Fault Tolerant Algorithms

2



H. Meuer, H. Simon, E. Strohmaier, & JDH. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerfulg p
Computers in the World

- Yardstick: Rmax from LINPACK MPPYardstick: Rmax from LINPACK MPP
Ax=b, dense problem TPP performance

- Updated twice a year
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SC‘xy in the States in November
Meeting in Germany in June

3- All data available from www.top500.org



Performance Development
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29th List: The TOP10
Manufacturer Computer Rmax 

[TF/s]
Installation Site Country Year #Proc

1 IBM BlueGene/L
eServer Blue Gene

280.6 DOE/NNSA/LLNL USA 2005 131,072
eServer Blue Gene

2
10 Cray Jaguar

Cray XT3/XT4
101.7 DOE/ORNL USA 2007 23,016

3
2 Sandia/Cray Red Storm

Cray XT3
101.4 DOE/NNSA/Sandia USA 2006 26,5442 Cray XT3

4
3 IBM BGW

eServer Blue Gene
91.29 IBM Thomas Watson USA 2005 40,960

5 IBM New York BLue
eServer Blue Gene

82.16 Stony Brook/BNL USA 2007 36,864

6
4 IBM ASC Purple

eServer pSeries p575
75.76 DOE/NNSA/LLNL USA 2005 12,208

7 IBM BlueGene/L
eServer Blue Gene

73.03 Rensselaer Polytechnic 
Institute/CCNI USA 2007 32,768

8 Dell Abe
PowerEdge 1955, Infiniband

62.68 NCSA USA 2007 9,600

9
5 IBM MareNostrum

JS21 Cluster, Myrinet
62.63 Barcelona Supercomputing 

Center Spain 2006 12,240

29th List / June 2007www.top500.org
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10 SGI HLRB-II
SGI Altix 4700

56.52 LRZ Germany 2007 9,728



Countries / Systems
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Performance Projection
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Cores per System – June 2007
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Chips Used in Each of the 500 Systems

Intel EM64T

96% = 58% Intel 
17% IBM 
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Interconnects / Systems
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GigE + Infiniband + Myrinet = 76%



IncreaseIncrease

Increasing the number of gates into a tight knot and decreasing the cycle time of the processor

Lower Lower 
VoltageVoltage

Increase Increase 
Clock RateClock Rate
& Transistor & Transistor 

DensityDensityDensityDensity

We have seen increasing number of gates on a 
chip and increasing clock speed.Cache Cache

Heat becoming an unmanageable problem, Intel 
Processors > 100 Watts

Core Core Core

C1 C2 C1 C2 We will not see the dramatic increases in clock 
speeds in the future.

However, the number of                                            

C1 C2

Cache

C1 C2

Cache

C1 C2

C3 C4

C1 C2

C3 C4
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gates on a chip will                                                
continue to increase.C3 C4 C3 C4

C1 C2

C3 C4

C1 C2

C3 C4



Power Cost of FrequencyPower Cost of Frequency

• Power ∝ Voltage2 x Frequency (V2F)

• Frequency ∝ Voltage

P F 3• Power ∝Frequency3
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Power Cost of FrequencyPower Cost of Frequency

• Power ∝ Voltage2 x Frequency (V2F)

• Frequency ∝ Voltage

P F 3• Power ∝Frequency3
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80 Core80 Core
• Intel’s 80 

Core chipCore chip
1   Tflop/s
62  Watts62  Watts
1.2 TB/s 
internal BWinternal BW
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What’s Next?What’s Next? Different Classes of Chips
Home
G  / G hi

All Large CoreAll Large Core
Mixed LargeMixed Large
andand
Small CoreSmall Core Many Small CoresMany Small Cores

Games / Graphics
Business 
Scientific

S all Co eS all Co e Many Small CoresMany Small Cores

All Small CoreAll Small Core

+ 3D Stacked Many Floating-

SRAMSRAM

MemoryPoint Cores



Major Changes to SoftwareMajor Changes to Software
• Must rethink the design of our 

softwaresoftware
Another disruptive technology
• Similar to what happened with cluster 

computing and message passing
Rethink and rewrite the applications, 
algorithms  and softwarealgorithms, and software

• Numerical libraries for example will 
changechange

For example, both LAPACK and 
ScaLAPACK will undergo major changes 

16

g j g
to accommodate this



Four Important Concepts that Will Effect Four Important Concepts that Will Effect 
Math SoftwareMath Software

• Effective Use of Many-Corey
• Exploiting Mixed Precision in Our 

Numerical ComputationsNumerical Computations
• Self Adapting / Auto Tuning of 

Software
• Fault Tolerant Algorithms• Fault Tolerant Algorithms



A New Generation of Software:A New Generation of Software:
PLASMAPLASMAPLASMAPLASMA

Algorithms follow hardware evolution along time.

LINPACK (80’s)
(Vector operations)

Rely on 
Level 1 BLAS(Vector operations) - Level-1 BLAS

operations

LAPACK (90’s) Rely on LAPACK (90 s)
(Blocking, cache 
friendly)

Rely on 
- Level-3 BLAS 

operations

PLASMA (00’s)
New Algorithms 
(many-core friendly)

Rely on 
- a DAG/scheduler
- block data layout

some extra kernels- some extra kernels
Those new algorithms 

- have a very low granularity, they scale very well (multicore, petascale computing, … )
- removes a lots of dependencies among the tasks, (multicore, distributed computing)

avoid latency (distributed computing out of core)- avoid latency (distributed computing, out-of-core)
- rely on fast kernels 

Those new algorithms need new kernels and rely on efficient scheduling algorithms.



Tuesday Alfredo Tuesday Alfredo Buttari’sButtari’s TalkTalk
Track A: 4:20 Track A: 4:20 –– 6:006:00Track A: 4:20 Track A: 4:20 6:006:00

• Parallel Tiled QR Factorization for 
Multicore ArchitecturesMulticore Architectures

PLASMA - Parallel Linear Algebra for 
Scalable Multi-Core ArchitecturesScalable Multi-Core Architectures
• Designing the next generation numerical 

library
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With With the the Hype on Hype on Cell & PS3Cell & PS3
We Became Interested We Became Interested We Became Interested We Became Interested 

• The PlayStation 3's CPU based on a "Cell“ processor
• Each Cell contains a Power PC processor and 8 SPEs. (SPE is processing unit, 

SPE: SPU + DMA engine)
An SPE is a self contained vector processor which acts independently from the 
others. 

• 4 way SIMD floating point units capable of a total of 25.6 Gflop/s @ 3.2 GHZ

204 8 Gflop/s peak!204.8 Gflop/s peak!
The catch is that this is for 32 bit floating point; (Single Precision SP) 
And 64 bit floating point runs at 14.6 Gflop/s total for all 8 SPEs!! 

• Divide SP peak by 14; factor of 2 because of DP and 7 because of latency issues

SPE ~ 25 Gflop/s peak

20



Performance of Single Precision Performance of Single Precision 
on Conventional Processorson Conventional Processorson Conventional Processorson Conventional Processors

• Realized have the 
similar situation on 
our commodity 

SizeSize SGEMM/SGEMM/
DGEMMDGEMM SizeSize SGEMV/SGEMV/

DGEMVDGEMV
AMD Opteronour commodity 

processors.
• That is, SP is 2X as 

fast as DP on many 
systems

AMD Opteron
246 30003000 2.002.00 50005000 1.701.70

UltraSparc-IIe 30003000 1.641.64 50005000 1.661.66
Intel PIII systems

• The Intel Pentium 
and AMD Opteron
h  SSE2

Coppermine 30003000 2.032.03 50005000 2.092.09

PowerPC 970 30003000 2.042.04 50005000 1.441.44
Intel 

Woodcrest 30003000 1 811 81 50005000 2 182 18have SSE2
• 2 flops/cycle DP
• 4 flops/cycle SP

Woodcrest 30003000 1.811.81 50005000 2.182.18

Intel XEON 30003000 2.042.04 50005000 1.821.82
Intel Centrino

Duo 30003000 2.712.71 50005000 2.212.21

Single precision is faster because:
• Higher parallelism in SSE/vector units

• IBM PowerPC has 
AltiVec
• 8 flops/cycle SP

4 fl / l  DP
g p

• Reduced data motion 
• Higher locality in cache

• 4 flops/cycle DP
• No DP on AltiVec



32 or 64 bit Floating Point Precision?32 or 64 bit Floating Point Precision?
• A long time ago 32 bit floating point was 

used
S ill d i  i ifi   b  li i dStill used in scientific apps but limited

• Most apps use 64 bit floating point
Accumulation of round off errorAccumulation of round off error

• A 10 TFlop/s computer running for 4 hours performs > 1 
Exaflop (1018) ops. 

Ill conditioned problemsp
IEEE SP exponent bits too few (8 bits, 10±38)
Critical sections need higher precision

• Sometimes need extended precision (128 bit fl pt)Sometimes need extended precision (128 bit fl pt)
However some can get by with 32 bit fl pt in 
some parts

• Mixed precision a possibility
22

• Mixed precision a possibility
Approximate in lower precision and then refine 
or improve solution to high precision.



Idea Goes Something Like This…Idea Goes Something Like This…
• Exploit 32 bit floating point as much as 

possible.
Especially for the bulk of the computation

• Correct or update the solution with selective 
use of 64 bit floating point to provide a 
refined results

• Intuitively: 
Compute a 32 bit result, 
C l l t   ti  t  32 bit lt i  Calculate a correction to 32 bit result using 
selected higher precision and,
Perform the update of the 32 bit results with the 

23

Perform the update of the 32 bit results with the 
correction using high precision. 



MixedMixed--PrecisionPrecision Iterative RefinementIterative Refinement
It ti  fi t f  d  t    A   b   k thi  

L U = lu(A) SINGLE O(n3)
( 2)

• Iterative refinement for dense systems,   Ax = b, can work this 
way.

x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

L\(U\ ) SINGLE O( 2)z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

ENDEND



MixedMixed--PrecisionPrecision Iterative RefinementIterative Refinement
It ti  fi t f  d  t    A   b   k thi  

L U = lu(A) SINGLE O(n3)
( 2)

• Iterative refinement for dense systems,   Ax = b, can work this 
way.

x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

L\(U\ ) SINGLE O( 2)z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

ENDEND

Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt 
results when using DP fl pt.
It can be shown that using this approach we can compute the solution g pp p
to 64-bit floating point precision.

• Requires extra storage, total is 1.5 times normal;
• O(n3) work is done in lower precision( ) p
• O(n2) work is done in high precision

• Problems if the matrix is ill-conditioned in sp; O(108)



Results for Results for Multiple Precision Multiple Precision 
Iterative RefinementIterative Refinement

Architecture (BLAS)
1 Intel Pentium III Coppermine (Goto)
2 Intel Pentium III Katmai (Goto)
3 Sun UltraSPARC IIe (Sunperf)3 Sun UltraSPARC IIe (Sunperf) 
4 Intel Pentium IV Prescott (Goto)
5 Intel Pentium IV-M Northwood (Goto)
6 AMD Opteron (Goto)
7 C X1 (lib i)7 Cray X1 (libsci)
8 IBM Power PC G5 (2.7 GHz) (VecLib)
9 Compaq Alpha EV6 (CXML)
10 IBM SP Power3 (ESSL)
11 SGI Octane (ATLAS)

New routines in LAPACK that do this for LU and LLT



What about the Cell?What about the Cell?

Power PC at 3 2 GHz• Power PC at 3.2 GHz
DGEMM at 5 Gflop/s
Altivec peak at 25.6p

• Achieved 10 Gflop/s SGEMM

• 8 SPUs
204 8 Gflop/s peak!204.8 Gflop/s peak!
The catch is that this is for 32 bit floating point; 
(Single Precision SP) 

d b l lAnd 64 bit floating point runs at 14.6 Gflop/s
total for all 8 SPEs!! 

• Divide SP peak by 14; factor of 2 because of DP and 7 
because of latency issues

27

because of latency issues



IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b
250

200

SP Peak (204 Gflop/s)

SP Ax=b IBM
30

8 SGEMM (Embarrassingly Parallel)

100

150

G
Fl

op
/s DP Peak (15 Gflop/s)

DP Ax=b IBM

.30 secs

50

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500

3.9 secs

28

Matrix Size



IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b
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CholeskyCholesky on the Cellon the Cell, , Ax=b, A=AAx=b, A=ATT, , xxTTAxAx > 0> 0

Single precision performance

Mixed precision performance using iterative refinement 
Method achieving 64 bit accuracy

33 30
For the SPE’s standard C code and C language SIMD extensions (intrinsics) 



Quadruple PrecisionQuadruple Precision
n Quad Precision

Ax = b
Iter. Refine.

DP to QP
time (s) time (s) Speedup  

Intel Xeon 3.2 GHz

Reference ( ) ( ) p p

100 0.29 0.03 9.5  
200 2.27 0.10 20.9  

implementation of 
the 
quad precision 
BLAS

300 7.61 0.24 30.5  
400 17.8 0.44 40.4  
500 34 7 0 69 49 7

Accuracy: 10-32

No more than 3 steps 
of iterative refinement500 34.7 0.69 49.7  

600 60.1 1.01 59.0  
700 94.9 1.38 68.7  

of iterative refinement 
are needed.

800 141. 1.83 77.3  
900 201. 2.33 86.3  

1000 276 2 92 94 8
31• Variable precision factorization (with say < 32 bit precision) 

plus 64 bit refinement produces 64 bit accuracy

1000 276. 2.92 94.8  



Sparse Direct Solver and Iterative Sparse Direct Solver and Iterative 
RefinementRefinement

MUMPS package based on multifrontal approach which 
generates small dense matrix multiplies

1.8

2
Speedup Over DP

Opteron w/Intel compiler Iterative Refinement
Single Precision

1

1.2

1.4

1.6

0.4

0.6

0.8

1

G64
Si10H16
airfoil_2d
bcsstk39
blockqp1
c-71
cavity26
dawson5
epb3
finan51
heart1
kivap0
kivap0
mult
nasa
nem qa8

rm to v w

Ite ra tiv e  R e fin e me n t

0

0.2

32

d 9 p1 6 n5 512
t1 p004
p006
lt_dcop_01
sasrb
emeth26
a8fk
ma10
torso2
venkat01
wathen120

Tim Davis's Collection, n=100K - 3M



Sparse Iterative Methods (PCG)Sparse Iterative Methods (PCG)
• Outer/Inner Iteration Inner iteration:

In 32 bit floating point
Outer iterations using 64 bit floating point

33

• Outer iteration in 64 bit floating point and             fixed 
number of inner iteration in 32 bit floating point



Mixed Precision Computations forMixed Precision Computations for
Sparse Inner/OuterSparse Inner/Outer--type Iterative Solverstype Iterative Solverspp ypyp

2 5

Time speedups for mixed precision Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP 
(CG, GMRES, PCG, and PGMRES with diagonal preconditioners)

1 75
2

2.25
2.5 Machine:

Intel Woodcrest (3GHz, 1333MHz bus)

Reference methods

1
1.25
1.5

1.75
CG
PCG
GMRES

0 25
0.5

0.75
1 GMRES

 PGMRES 

(More is better)

0
0.25

11,142 25,980 79,275 230,793 602,091

6 021 18 000 39 000 120 000 240 000

Matrix size

Condition number

( )
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6,021       18,000      39,000     120,000   240,000 Condition number



Intriguing PotentialIntriguing Potential
• Exploit lower precision as much as possible

Payoff in performance
F t  fl ti  i t • Faster floating point 

• Less data to move

• Automatically switch between SP and DP to match 
th  d i d the desired accuracy

Compute solution in SP and then a correction to the 
solution in DP

P i l f  GPU  FPGA  i l  • Potential for GPU, FPGA, special purpose processors
What about 16 bit floating point?

• Use as little you can get away with and improve the accuracy

• Linear systems and Eigenvalue, optimization 
problems, where Newton’s method is used.

35 Correction = - A\(b – Ax)



How to Deal with Complexity? How to Deal with Complexity? 
• Complexity is increasing in our systems and 

efficiency of our software is going down.y g g
More parallelism, hardware complexity

• Handwritten code is 
I i  diffi lt t  d lIncreasing difficult to develop
Expensive
Rapidly outdated

• Adaptivity is the key for applications to effectively use 
available resources whose complexity is exponentially 
increasing

• Goal:  
Automatically bridge the gap between the application 
and computers that are rapidly changing and getting and computers that are rapidly changing and getting 
more and more complex



Examples of Automatic Performance Examples of Automatic Performance 
TuningTuning

• Dense BLAS
Sequential

Proceedings of the IEEE,                                
V: 93 #: 2 Feb. 2005

Issue on Program 
Generation, 

O i i i dSequential
ATLAS (UTK) & PHiPAC (UCB)

• Fast Fourier Transform (FFT) & variations

Optimization, and 
Platform Adaptation

( )
FFTW (MIT)
Sequential and Parallel

ffwww.fftw.org
• Digital Signal Processing

SPIRAL: www spiral net  (CMU)SPIRAL: www.spiral.net  (CMU)
• MPI Collectives (UCB, UTK)
• More projects  conferences  government More projects, conferences, government 

reports, …



Generic Code OptimizationGeneric Code Optimization

• Can ATLAS-like techniques be applied to arbitrary code?
• What do we mean by ATLAS-like techniques?What do we mean by ATLAS like techniques?

Blocking
Loop unrollingp g
Data prefetch
Functional unit scheduling
etc.

• Referred to as empirical optimization
G t   i tiGenerate many variations
Pick the best implementation by                                      
measuring the performancemeasuring the performance



Applying Self Adapting SoftwareApplying Self Adapting Software

• Numerical and Non-numerical 
li tiapplications

BLAS like ops / message passing collectives

• Static or Dynamic determine code to be 
used

Perform at make time / every time invoked

• Independent or dependent on data Independent or dependent on data 
presented

Same on each data set / depends on Same on each data set / depends on 
properties of data 39



Future Large Systems, Say in a Few YearsFuture Large Systems, Say in a Few Years

• 128 cores per socket

• 32 sockets per node

128 d   t• 128 nodes per system

• System = 128*32*128• System = 128 32 128
= 524,288 Cores!

• And by the way, its 4 
threads of exec per core

That’s about 2M threads to 
40

• That’s about 2M threads to 
manage 



Conclusions Conclusions 
• For the last decade or more, the research 

investment strategy has been investment strategy has been 
overwhelmingly biased in favor of hardware. 

• This strategy needs to be rebalanced -gy
barriers to progress are increasingly on the 
software side.  

• Moreover, the return on investment is more 
favorable to software.

Hardware has a half-life measured in years, while 
software has a half-life measured in decades.

• High Performance Ecosystem out of balanceg y
Hardware, OS, Compilers, Software, Algorithms, Applications

• No Moore’s Law for software, algorithms and applications
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