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LIGO: (Laser Interferometer sy
Gravitational-Wave Observatory)
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e AiIms to detect gravitational waves predicted by Einstein’s
theory of relativity.

e Can be used to detect
e binary pulsars
e mergers of black holes
e ‘“starguakes” in neutron stars

e Two installations: in Louisiana (Livingston) and
Washington State

o Other projects: Virgo (Italy), GEO (Germany), Tama (Japan)

e Instruments are designed to measure the effect of
gravitational waves on test masses suspended in vacuum.,

e Data collected during experiments is a collection of time
series (multi-channel)
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LIGO’s computations

e Binary inspiral analysis

e Size of analysis for meaningful results
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at least 221 GBytes of gravitational-wave data

approximately 70,000 computational tasks

e Desired analysis:

Data from November 2005--November 2006

10TB of input data

Approximately 185,000 computations edges

1 Tb of output data



LIGO’s computational -
resources
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e LIGO Data Grid

Condor clusters managed by the collaboration
~ 6,000 CPUs

e Open Science Grid

A US cyberinfrastructure shared by many
applications

~ 20 Virtual Organizations

~ 258 GB of shared scratch disk space on OSG
sites
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Problem
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e How to automate the execution of thousands
of tasks?
Use a workflow structure for the application

Use Pegasus workflow manager to map high-
level workflows onto available resources

Use Condor DAGMan for workflow execution

Take into account intermediate data products
Minimize the data footprint of the workflow

Schedule the workflow tasks in a disk-space
aware fashion



A
Workflow Building Blocks
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e Standalone computations
e Data transfers

e |In distributed environments there are many
choices of compute and data resources

e In many cases data movement depends on
the scheduling of the computation



o
Pegasus est. 2001

e Based on the programming language principle

Leverage abstraction for workflow description to obtain
ease of use, scalability, and portability

Provide a “compiler” to map from high-level descriptions to
executable workflows

Correct mapping
= Uses information services available on the grid
= Infers data transfer and registration

Performance enhanced mapping
Data-space conscious mapping

Rely on a runtime engine to carry out the instructions—
Condor DAGMan

Scalable manner
Reliable manner
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Pegasus mapping

Select compute resources
Select data sources
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Workflow Footprint
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e In order to improve the workflow footprint, we
need to determine when data are no longer
needed:

Because data was consumed by the next
component and no other component needs it

Because data was staged-out to permanent
storage

Because data are no longer needed on a
resource and have been stage-out to the
resource that needs it



Cleanup Disk Space as Workflow Progresses| &
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e For each node add dependencies to cleanup all the files used and
produced by the node

e If afileis being staged-in from rlto r2, add a dependency between
the stage-in and the cleanup node

e If afileis being staged-out, add a dependency between the stage-
out and the cleanup node
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Evaluation

pagasys
e Simulations
Extended Gridsim simulator -
4 and 10 resources .
Random task scheduling
Assume sufficient storage

e Simulated LIGO workflows

Small test workflow, 166 tasks, 600 GB max total
storage (includes intermediate data products)

Large-scale analysis, 38,954 tasks, ~100 TB
total (includes intermediate data products)
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e Approximately 50% improvement in workflow
data footprint



Storage-aware A4
scheduling

e For all ready tasks

e Identify all resources that can accommodate the
data
Expected disk usage EDU(i) = input (i) + output(i)
e Allocate tasks to the resource which can achieve the
earliest finish time
e Cleanup unnecessary files as before

e If no resources satisfy the space requirements of
any ready task, the algorithm halts with failure

pagasvs

Details in A. Ramakrishnan, et al., "Scheduling Data -Intensive Workflows onto
Storage-Constrained Distributed Resources," in Seventh IEEE International
Symposium on Cluster Computing and the Grid — CCGrid 2007, Rio de Janeiro,
Brazil



e Algorithms Simulated: 7
Storage-aware scheduling with cleanup

Random scheduling with cleanup

Storage-aware scheduling without cleanup

e Application: Small LIGO workflow

e Environment:

Number of resources: 3, 6, 9
Network speed 1, 10, 100 MB/sec
Disk storage per resource: 10, 15, 20, 30



-

Network | Storage || Storage/Cleanup | Random/Cleanup | Storage/No cleanup

Speed | GB/reso

(MB/sec) | yrce
2,154 2,548 2,154
2,154 2,548 Falil
2,154 Fall Falil
3,584 6,308 3,854
3,584 6,308 Falil
3,584 Fall Falil
17,889 43,910 17,889
17,889 43,910 Falil
17,889 Fall Fall
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Experiments on the Grid and
Astronomy Application



Montage: Generating mosaics of the sky:
Composing a large image based on
many individual images

Size of the | Number of | Number of | Number of Total Approx.
mosaic is |input data |jobs Intermediate | data execution time
degrees files files footprint | (20 procs)
square*

1 53 232 588 1.2GB 40 mins

2 212 1,444 3,906 5.5GB 49 mins

4 747 4,856 13,061 20GB 1hr 46 mins

6 1,444 8,586 22,850 38GB 2 hrs. 14 mins
10 3,722 20,652 54,434 97GB 6 hours

*The full moon is 0.5 deg. sq. when viewed form Earth, Full Sky is ~ 400,000 deg. sq.




Some Issues with initial -
cleanup algorithm
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e We have as many cleanup nodes as files
e Have some redundant dependencies

e May result in inefficiencies in workflow
execution in real deployments

e New solution

have at most one cleanup task per computation
task



A4

pagasvs

Number of Cleanup Tasks and the Number of Dependencies.

-

Comparison via Simulation of the Data Cleanup Algorithms, Showing the Reduction in the

L SC wor kflow Max Space Used No of CleanUp No of
(MBs) Jobs dependencies

Algorithm | 1027.13 237 840

Algorithm |1 1028.23 96 238

2-degree Max Space Used No of CleanUp No of
MONTAGE (MBs) Jobs dependencies

Algorithm | 2405.71 2029 4211

Algorithm 11 2409.71 731 1296

Algorithm |- One cleanup node per file
Algorithm 1I- At most on node per task



Cleanup on the Grid, Montage application (j_\
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LIGO Inspiral Analysis Workflow

------------------------------------------- Small Workflow: 164 nodes reganyy

1200 Remote Storage used over time
T — with cleanup nodes

without cleanup ned

1050 e e i e e e

LIGO
workflow
running on
OSG

2355567 46,7733 7016 . 116,935
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Assumed Data cleanup at each level of LIGO DAG
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—

Assumes level-based
scheduling, all nodes at
a level need to
complete before the
next level starts

Data cleanup at each level of LIGO DAG




Montage Workflow
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Challenges in implementing (o~
data space-aware scheduling
e Difficult to get accurate ' "
performance estimates for tasks

e Difficult to get good estimates of
the sizes of the output data

Errors compound in the workflow

e Difficult to get accurate estimates
of data storage space
Space is shared among many users
Hard to get allocation estimates

Even if you have space when you
schedule, may not be there to
receive all the data




Conclusions %
Data are an important part of today’s applications

and need to be managed
Optimizing workflow disk space usage

e Data workflow footprint concept applicable within
one resource

e Data-aware scheduling across resources

Proposed an algorithm which can cleanup the data
as a workflow progresses

e The effectiveness of the algorithm depends on
the structure of the workflow and its data
characteristics

Proposed an algorithm for data-aware scheduling
with cleanup and evaluated it through simulations

Showed that simulation and practice can differ

e Workflow restructuring may be needed to decrease

footprint



Relevant Links -

Pegasus: pegasus.isi.edu pagdsvs
LIGO: www.ligo.caltech.edu/

Montage: montage.ipac.caltech.edu/

Open Science Grid: www.openscienceqrid.org
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