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LIGO: (Laser Interferometer 
Gravitational-Wave Observatory)

Aims to detect gravitational waves predicted by Einstein’s 
theory of relativity.
Can be used to detect

binary pulsars
mergers of black holes
“starquakes” in neutron stars

Two installations: in Louisiana (Livingston) and 
Washington State 

Other projects: Virgo (Italy), GEO (Germany), Tama (Japan)
Instruments are designed to measure the effect of 
gravitational waves on test masses suspended in vacuum.
Data collected during experiments is a collection of time 
series (multi-channel)
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LIGO’s computations

Binary inspiral analysis
Size of analysis for meaningful results

at least 221 GBytes of gravitational-wave data 
approximately 70,000 computational tasks

Desired analysis:
Data from November 2005--November 2006

10TB of input data 

Approximately 185,000 computations edges
1 Tb of output data



LIGO’s computational 
resources

LIGO Data Grid
Condor clusters managed by the collaboration
~ 6,000 CPUs

Open Science Grid
A US cyberinfrastructure shared by many 
applications
~ 20 Virtual Organizations
~ 258 GB of shared scratch disk space on OSG 
sites 



Problem
How to automate the execution of thousands 
of tasks?

Use a workflow structure for the application
Use Pegasus workflow manager to map high-
level workflows onto available resources
Use Condor DAGMan for workflow execution

How to “fit” the computations onto the OSG
Take into account intermediate data products
Minimize the data footprint of the workflow
Schedule the workflow tasks in a disk-space 
aware fashion



Workflow Building Blocks

Standalone computations
Data transfers
Result (final and intermediate) registration in 
catalogs (optional)

In distributed environments there are many 
choices of compute and data resources
In many cases data movement depends on 
the scheduling of the computation



Pegasus           est. 2001
Based on the programming language principles 

Leverage abstraction for workflow description to obtain 
ease of use, scalability, and portability
Provide a “compiler” to map from high-level descriptions to 
executable workflows 

Correct mapping 
Uses information services available on the grid
Infers data transfer and registration

Performance enhanced mapping
Data-space conscious mapping

Rely on a runtime engine to carry out the instructions—
Condor DAGMan

Scalable manner
Reliable manner



Pegasus mapping

Select compute resources 
Select data sources
Add data stage-in and data stage-out nodes
Originally: data cleaned up once all execution done
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Storage on the Grid

Submission Host
Pegasus/DAGMan

Condor Q

O(100GB)

O(100TB-1PB)

O(100GB-1TB)

Community
Storage

Schedule 
data 
movements

Grid Site
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Workflow Footprint

In order to improve the workflow footprint, we 
need to determine when data are no longer 
needed:

Because data was consumed by the next 
component and no other component needs it
Because data was staged-out to permanent 
storage
Because data are no longer needed on a 
resource and have been stage-out to the 
resource that needs it



For each node add dependencies to cleanup all the files used and
produced by the node
If a file is being staged-in from r1 to r2, add a dependency between 
the stage-in and the cleanup node
If a file is being staged-out, add a dependency between the stage-
out and the cleanup node

Cleanup Disk Space as Workflow Progresses



Evaluation
Simulations

Extended Gridsim simulator
4 and 10 resources
Random task scheduling
Assume sufficient storage

Simulated LIGO workflows
Small test workflow, 166 tasks, 600 GB max total 
storage (includes intermediate data products)
Large-scale analysis, 38,954 tasks,  ~100 TB 
total (includes intermediate data products)



Small and Large LIGO 
Workflow

Approximately 50% improvement in workflow 
data footprint



Storage-aware 
scheduling

For all ready tasks
Identify all resources that can accommodate the 
data

Expected disk usage EDU(i) = input (i) + output(i)

Allocate tasks to the resource which can achieve the 
earliest finish time
Cleanup unnecessary files as before
If no resources satisfy the space requirements of 
any ready task, the algorithm halts with failure

Details in A. Ramakrishnan, et al., "Scheduling Data -Intensive Workflows onto 
Storage-Constrained Distributed Resources," in Seventh IEEE International 
Symposium on Cluster Computing and the Grid — CCGrid 2007, Rio de Janeiro, 
Brazil



Results
Algorithms Simulated:

Storage-aware scheduling with cleanup 
Storage/Cleanup
Random scheduling with cleanup
(Random/Cleanup)
Storage-aware scheduling without cleanup
Storage/No Cleanup

Application: Small LIGO workflow
Environment:

Number of resources: 3, 6, 9
Network speed 1, 10, 100 MB/sec
Disk storage per resource: 10, 15, 20, 30



6 resources, time in seconds
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Experiments on the Grid and 
Astronomy Application



*The full moon is 0.5 deg. sq. when viewed form Earth, Full Sky is ~ 400,000 deg. sq.

Montage: Generating mosaics of the sky: 
Composing a large image based on 
many individual images
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Some issues with initial 
cleanup algorithm

We have as many cleanup nodes as files
Have some redundant dependencies
May result in inefficiencies in workflow 
execution in real deployments

New solution
have at most one cleanup task per computation 
task



 Comparison via Simulation of the Data Cleanup Algorithms, Showing the Reduction in the 

Number of Cleanup Tasks and the Number of Dependencies. 

LSC workflow Max Space Used 
( MBs ) 

No of CleanUp 
Jobs 

No of 
dependencies 

Algorithm I       1027.13                237               840 

Algorithm II       1028.23                 96              238 

2-degree 
MONTAGE 

Max Space Used 
( MBs ) 

No of CleanUp 
Jobs 

No of 
dependencies 

Algorithm I       2405.71              2029             4211 

Algorithm II        2409.71                731             1296 

Algorithm I– One cleanup node per file
Algorithm II- At most on node per task



1.25GB versus 4.5 GB

Open Science Grid

Cleanup on the Grid, Montage application

~ 1,200 nodes



LIGO Inspiral Analysis Workflow

Small Workflow: 164 nodes

LIGO 
workflow 
running on 
OSG



Assumes level-based 
scheduling, all nodes at 
a level need to 
complete before the 
next level starts 



Montage Workflow
Montage 2 Degree
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LIGO Workflows

26% 
Improvement
In disk space 
Usage

50% slower 
runtime

LSC Workflow With Limited Restructuring
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LIGO Workflows

56%  
improvement
in space usage

3 times slower in 
runtime



Challenges in implementing 
data space-aware scheduling

Difficult to get accurate 
performance estimates for tasks
Difficult to get good estimates of 
the sizes of the output data

Errors compound in the workflow

Difficult to get accurate estimates 
of data storage space

Space is shared among many users
Hard to get allocation estimates
Even if you have space when you 
schedule, may not be there to 
receive all the data
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Conclusions

Data are an important part of today’s applications 
and need to be managed
Optimizing workflow disk space usage

Data workflow footprint concept applicable within 
one resource
Data-aware scheduling across resources

Proposed an algorithm which can cleanup the data 
as a workflow progresses

The effectiveness of the algorithm depends on 
the structure of the workflow and its data 
characteristics

Proposed an algorithm for data-aware scheduling 
with cleanup and evaluated it through simulations
Showed that simulation and practice can differ
Workflow restructuring may be needed to decrease 
footprint



Relevant Links
Pegasus: pegasus.isi.edu
LIGO: www.ligo.caltech.edu/
Montage: montage.ipac.caltech.edu/
Open Science Grid: www.opensciencegrid.org

Workflows for e-Science
I.J. Taylor, E. Deelman, D. B. Gannon 
M. Shields (Eds.), Springer, Dec. 2006

NSF Workshop on Challenges of Scientific 
Workflows : www.isi.edu/nsf-workflows06, 
E. Deelman and Y. Gil (chairs)
OGF Workflow research group
www.isi.edu/~deelman/wfm-rg


