
Motivation Components for HPC Usability requirements Component overhead comparison Summary

Interoperability of sparse linear system solvers
represented as components

Masha Sosonkina1

1Ames Laboratory and Iowa State University, USA

Parallel Processing and Applied Mathematics, 2007

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Collaborators

Randall Bramley Indiana University
Lois Curfman McInnes Argonne National Laboratory
Li Li Argonne National Laboratory
Fang Liu Indiana University
Boyana Norris Argonne National Laboratory

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Outline

1 Motivation
Sparse linear algebra in multi-scale simulations
Universe of existing sparse linear system solvers

2 Components for HPC
Common Component Architecture

3 Usability requirements
Design choices
Examples of interface levels
SPARSKIT components

4 Component overhead comparison
Fine-tuning of medium-level components
Versatility of SPARSKIT components

5 Summary

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Growing complexity of simulations

Address multi-scale phenomena
arising in many scientific disciplines

Quantum chemistry: Quantum
Mechanics/Molecular Mechanics interface.
Fusion: Magneto-hydrodynamics system
resolution on very small scale combined with
radiation transport.

Transfer infornation from one scale to
another.

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Growing complexity of simulations

Integrate existing and emerging codes.
Quantum chemistry: multiple codes on the same
“theory-level” but one may be best for different input cases
(e.g., integrals).
Fusion: couple adaptive mesh refinement (AMR) and
plasma kinetics codes.
Needed an easy “on-the-fly” selection of these codes.

Utilize efficiently massively-parallel platforms.
Couple with performance analysis tools.
Map various simulation tasks to different processor groups.

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Sparse linear algebra in multi-scale simulations

Ubiquitous: Sparse matrices arise from near-neighbor and
long-range interactions.

Matrices have different characteristics and may be
structured and unstructured, affect the numerical methods
applied

Sparse linear system solution (or eigen-value computation)
is a significant cost factor.

Numerous implementations exist and depend on the
problem and hardware architecture at hand.
Sequences of matrices are often to be solved during
simulation cycles.

Switching of solution methods may be advantageous from one
cycle to another in a simulation.

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Universe of existing sparse linear system solvers

Dichotomy into sparse direct and iterative solvers
Direct: solve liner system by performing Gaussian
elimination directly while applying sparse matrix
techniques.
Iterative: find solution with a desired accuracy by improving
solution one step at a time, say, by a projection method.
Large number of implementations:

Example, a list of freely available solver software is at
http://www.netlib.org/utk/people/JackDongarra/la-sw.html.

Contains 12 direct and 22 iterative solver entries.

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Solver integration via Trilinos and PETSc

Trilinos from Sandia National Laboratories.
Targets multi-physics complex simulations.
Object-oriented framework for inclusion of packages:

Each package is self-contained software.
Minimal set of interfaces/add-ons to the package to add it to
the Trilinos framework.

http://trilinos.sandia.gov
PETSc from Argonne National Laboratory.

Provides software for the scalable solution of systems of
equations arising from PDEs (original goal).
Has object-oriented programming style leveraging
structured and unstructured matrices.
Interfaces with many existing solvers as well as
optimization techniques.
http://www.mcs.anl.gov/petsc

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Overview of componentization for HPC

Special requirements of HPC:
May need all available computational resources
(problem scalability).
Perform mostly floating-point computations.
Exploit multiple levels of parallelism in applications.
Rely heavily on large legacy code base.
Adapt to novel HPC architectures.

HPC components are to share, reuse, and redeploy codes:

Emphasis on performance.
Non-invasive encapsulation of functionality.
Assembly of applications from available components.

Several component models exist.
In business world: DCOM, Corba Component Model.
In HPC community: Fractal, GCCM, CCA.

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Common Component Architecture: Main features

U.S. Department of Energy project involving many national
laboratories and academia. www.cca-forum.org.
Based on Scientific Interface Definition Language (SIDL).

Babel [from LLNL] provides multi-lingual support for SIDL.

Includes special interfaces (ports) to interact according to
CCA standard.
Relies on a CCA-compliant framework and component
builder to ensure component interaction and application
assembly.
Provides API for component repositories.

Motivation Components for HPC Usability requirements Component overhead comparison Summary

CCA application assembly

Component’s Uses ports are connected to corresponding
Provides ports of other components.

Parallelism in CCA
CCA model is currently parallelism-transparent
Framework instances are multiplexed in each processor.

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Design choices

Low-level: User expresses all sparse matrix operations
with components.

Benefitial for very large matrices when conversion is
prohibitively expensive.

Medium-level: Major solver parts are separate
components.

Useful for expert tuning of solution;
User needs to know matrix representation.

High-level: Entire linear system solution is encapsulated
into a component.

Treats solver as “black box”;
Easy switching of solver packages;
Many solvers, such as PETSc and Trilinos, may be linked
via high-level interfaces.

Motivation Components for HPC Usability requirements Component overhead comparison Summary

High-level design: CCA-LISI

CCA LInear system Solver Interfaces [Indiana University]

Design goals:
Hide the underlying implementation while preserving
functionality and user flexibility.

Encapsulate different sparse matrix formats into interface
implementations.
Handle parallelism assuming block-row matrix distribution
and programming model of each underlying solver.
Provide for user-defined matrix-vector operations similar in
spirit to “reverse communication”.
Ease and simplicity of use: Allow user to seamlessly switch
linear system solver packages.

Motivation Components for HPC Usability requirements Component overhead comparison Summary

High-level design: CCA-LISI

LISI architecture
SparseSolver interface has provides port for application.
MatrixFree interface is to be implemented by application
and is used by the solver.
Matrix is passed to LISI solver as multiple-arrays to reduce
complexity of matrix object construction on the application
side.
Solver parameters are set as (key , value) pair, while
explicit methods are proposed for matrix data input.

Application

LISI SuperLU

LISI PETSc

LISI Trilinos

Motivation Components for HPC Usability requirements Component overhead comparison Summary

High-level design: TOPS

Interfaces for solvers developed in the Center “Towards
Optimal Petascale Simulations” (TOPS)

Design Goals:
Provide scalable solution of linear and nonlinear systems
arising from structured or unstructured meshes. Allow
maximum flexibility to the application as to the data structures
and solution choice.

Enable experimentation with solvers without changing
matrix data structures.
Provide for structured and unstructured solvers.
Construct the system on the application side and use it by
the connected TOPS solver.

Motivation Components for HPC Usability requirements Component overhead comparison Summary

High-level design: TOPS

TOPS architecture
TOPS.System interface is to be implemented in the
application code and used by the TOPS.Solver component.
TOPS.Structured.Solver and
TOPS.Unstructured.Solver provide solution methods
for the matrix objects implemented in TOPS.System.
Separate methods exist for such functionality as residual
and initial guess computations, construction of right-hand
side.

Application

TOPS Solver

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Low- and Medium-level design: SPARSKIT-CCA

What is SPARSKIT?
Well-known library of serial sparse matrix kernels by
Yousef Saad (University of Minnesota).
Written in Fortran77.
Provides a range of functions for sparse matrix
computations with a focus on iterative solution techniques.

Provides iterative procedure to obtain approximate solution
(accelerators) and matrix transformations (preconditioning)
used in pre-processing.

BLASSM is a suite of BLAS-like operations on sparse
matrices.

Motivation Components for HPC Usability requirements Component overhead comparison Summary

SPARSKIT is a suite of medium-level components

Component interfaces designed to have standard argument
lists (e.g., for variations of the same preconditioner type).

A component implements particular preconditioner
creation process.
A component implements particular accelerator.

Example of a component SIDL interface for preconditioner

package sparskit version 1.0 {
interface GenericPreconditioner extends gov.cca.Port {
void setDoubleArgument(in string name, in double value);
void getDoubleArgument(in string name, inout double value);
void setIntArgument(in string name, in int value);
void getIntArgument(in string name, inout int value);
void getName(inout string name);
void apply();

void create(); } }

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Low-level BLASSM components

Low-level interface refers to operating on objects, such as
matrices, directly.

Implemented in many modern numerical software packages
in the conventional library format. (e.g., Diffpack, MTL)

BLASSM components extend SPARSKIT functionality to
many different matrix formats.

Accomplished as overloading.
Example: call a generic function amub to multiply matrix A
by matrix B; A specific version of amub is chosen at the
run-time based on the matrix format.

Format-agnostic code has its toll on component overhead.

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Overhead for different-level components
High-level interfaces in CCA-LISI

3-D Poisson equation with Dirichlet boundary conditions

−
∂2u
∂x2

−
∂2u
∂y2

−
∂2u
∂z2

= f

Solver parameters: BiCGSTAB, Jacobi preconditioning,
stopping tolerance 10−6.

High-level PETSc component

nnz its PETSc PETSc-CCA diff, %

76, 760 37 0.154 0.154 0
122,880 44 0.287 0.289 0.43
179,800 41 0.399 0.400 0.32
247,520 42 0.565 0.568 0.55
326,040 45 0.865 0.870 0.61
415,360 43 1.020 1.038 1.72
515,480 44 1.284 1.296 0.91

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Overhead for different-level components
Medium- and low-level interfaces in SPARSKIT

Solver parameters: Flexible GMRES(20),
ILUT preconditioner.
A × B computation (amub) in BLASSM.

SPARSKIT medium-level components

nnz its SKIT SKIT-CCA diff

76.760 36 0.0792 0.08 1
122,880 36 0.14 0.14 0
179,800 36 0.208 0.215 3.36
247,520 36 0.334 0.345 3.29
326,040 36 0.443 0.448 1.13
415,360 36 0.570 0.588 3.12
515,480 36 0.7185 0.730 1.6

BLASSM

diff

28.57
31.35
20.88
23.98
17.28

19.9
17.59

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Adaptivity features of preconditioners

Algebraic Recursive Multilevel Solver (ARMS) is an adaptive
preconditioner [Saad 2002].

Two-step construction of the ARMS preconditioner
1 Reorder the matrix A into a 2 × 2 block form

A =

(
B F
E C

)
.

2 Use an incomplete LU technique to obtain an approximate
factorization of B and approximations to the matrices L−1F ,
EU−1, and A1:(
B F
E C

)
≈

(
L 0

EU−1 I

)
×

(
U L−1F
0 A1

)
.

The process is repeated recursively on the matrix A1.

Motivation Components for HPC Usability requirements Component overhead comparison Summary

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 3155
0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 3155

Motivation Components for HPC Usability requirements Component overhead comparison Summary

ARMS preconditioner

At the last level, a simple (single-level) preconditioner is
used on the entire reduced system.
An ARMS component allows users to switch between
last-reduced system preconditioners and even add their
own preconditioners.

Example: Either ILUC or ILUT preconditioners at the last level.

Reorder

Reduce / More levels ?
Yes

No

ARMS Component

ILUC

ILUT
Last level of ARMS

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Solution using ARMS components

Consider two difficult to solve matrices, scircuit and igbt3.
matrix nnz Precon its time

scircuit

958,936 ARMS+ILUC 7 124.9
ARMS+ILUT 7 125.1

ILUC 55 11.2
ILUT * *

igbt3

234,006 ARMS+ILUC 8 20.23
ARMS+ILUT 6 19.5

ILUC * *
ILUT 19 0.55

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Versatility of SPARSKIT components

1 Instantiate more than one “last-level” preconditioner.
2 Decide at the run-time on particular ARMS

preconditioners.
Capture the convergence progress information.
Time individual components.

Provide computational Quality of Service to applications
Need for infrastructure support.
Components from Tuning and Analysis Utilities (TAU)
[University of Oregon].

TAU is a portable profiling and tracing toolkit for
performance analysis of parallel programs.
TAU Performance Component provides the Measurement
interface.
Data collection is by MasterMind component.
Provides Proxy Generator tool.

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Performance analysis using TAU

nnz Func Calls SKIT-CCA SKIT Norm, %

38,880

lusol 46 20 16 25.0
create 1 18 16 12.5
amux 47 12 11 9.1
apply 93 12 23 0.0

45,847

create 1 25 20 25.0
lusol 46 20 20 0.0

amux 47 13 13 0.0
apply 93 13 12 8.3

76,760

lusol 36 34.8 34.0 2.4
create 1 34 34 0.0
apply 73 28 27.2 2.9
amux 38 22 22 0.0

179,800

create 1 96.2 95 1.3
apply 73 96 89.5 7.3
lusol 36 91 80.5 13.1

amux 38 65 65 0.0

Motivation Components for HPC Usability requirements Component overhead comparison Summary

Summary

Linear system solver components enable HPC applications
to immediately benefit from a vast knowledge and code
bases in the field of numerical sparse linear algebra.
Components is a viable programming model for developing
sparse linear system solvers.

Incurs negligible overhead for coarse-grained
componentization.
Provides an easy access to legacy codes.
Integrates existing and new solver packages.

	Motivation
	Sparse linear algebra in multi-scale simulations
	Universe of existing sparse linear system solvers

	Components for HPC
	CCA
	Common Component Architecture

	Usability requirements
	Design choices
	Examples of interface levels
	TOPS interfaces
	TOPS interfaces
	SPARSKIT components

	Component overhead comparison
	Fine-tuning of medium-level components
	Versatility of SPARSKIT components

	Summary

