
General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 1 of 53

Go Back

Full Screen

Close

Quit

Dealing with Uncertainties in Computing:

from Probabilistic and

Interval Uncertainty to

Combination of Different Approaches,

with Application to Geoinformatics,

Bioinformatics, and Engineering

Vladik Kreinovich

Department of Computer Science,
University of Texas at El Paso,

El Paso, TX 79968, USA
vladik@utep.edu

http://www.cs.utep.edu/vladik

Interval computations website:
http://www.cs.utep.edu/interval-comp

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 2 of 53

Go Back

Full Screen

Close

Quit

1. General Problem of Data Processing under Uncer-
tainty

• Indirect measurements: way to measure y that are are
difficult (or even impossible) to measure directly.

• Idea: y = f(x1, . . . , xn)

-

· · ·
-

-

x̃n

x̃2

x̃1

-ỹ = f(x̃1, . . . , x̃n)f

• Problem: measurements are never 100% accurate: x̃i 6=
xi (∆xi 6= 0) hence

ỹ = f(x̃1, . . . , x̃n) 6= y = f(x1, . . . , yn).

What are bounds on ∆y
def
= ỹ − y?

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 3 of 53

Go Back

Full Screen

Close

Quit

2. Probabilistic and Interval Uncertainty

-

. . .

-

-

∆xn

∆x2

∆x1

-∆yf

• Traditional approach: we know probability distribution
for ∆xi (usually Gaussian).

• Where it comes from: calibration using standard MI.

• Problem: calibration is not possible in:

– fundamental science

– manufacturing

• Solution: we know upper bounds ∆i on |∆xi| hence

xi ∈ [x̃i −∆i, x̃i + ∆i].

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 4 of 53

Go Back

Full Screen

Close

Quit

3. Interval Computations: A Problem

-

· · ·
-

-

xn

x2

x1

-y = f(x1, . . . ,xn)f

• Given: an algorithm y = f(x1, . . . , xn) and n intervals
xi = [xi, xi].

• Compute: the corresponding range of y:

[y, y] = {f(x1, . . . , xn) |x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}.

• Fact: NP-hard even for quadratic f .

• Challenge: when are feasible algorithm possible?

• Challenge: when computing y = [y, y] is not feasible,
find a good approximation Y ⊇ y.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 5 of 53

Go Back

Full Screen

Close

Quit

4. Interval Computations: A Brief History

• Origins: Archimedes (Ancient Greece)

• Modern pioneers: Warmus (Poland), Sunaga (Japan),
Moore (USA), 1956–59

• First boom: early 1960s.

• First challenge: taking interval uncertainty into ac-
count when planning spaceflights to the Moon.

• Current applications (sample):

– design of elementary particle colliders: Berz, Kyoko
(USA)

– will a comet hit the Earth: Berz, Moore (USA)

– robotics: Jaulin (France), Neumaier (Austria)

– chemical engineering: Stadtherr (USA)

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 6 of 53

Go Back

Full Screen

Close

Quit

5. Alternative Approach: Maximum Entropy

• Situation: in many practical applications, it is very
difficult to come up with the probabilities.

• Traditional engineering approach: use probabilistic tech-
niques.

• Problem: many different probability distributions are
consistent with the same observations.

• Solution: select one of these distributions – e.g., the
one with the largest entropy.

• Example – single variable: if all we know is that x ∈
[x, x], then MaxEnt leads to a uniform distribution on
[x, x].

• Example – multiple variables: different variables are
independently distributed.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 7 of 53

Go Back

Full Screen

Close

Quit

6. Limitations of Maximum Entropy Approach

• Example: simplest algorithm y = x1 + . . . + xn.

• Measurement errors: ∆xi ∈ [−∆, ∆].

• Analysis: ∆y = ∆x1 + . . . + ∆xn.

• Worst case situation: ∆y = n ·∆.

• Maximum Entropy approach: due to Central Limit The-

orem, ∆y is ≈ normal, with σ = ∆ ·
√

n√
3
.

• Why this may be inadequate: we get ∆ ∼
√

n, but due
to correlation, it is possible that ∆ = n ·∆ ∼ n �

√
n.

• Conclusion: using a single distribution can be very
misleading, especially if we want guaranteed results.

• Examples: high-risk application areas such as space
exploration or nuclear engineering.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 8 of 53

Go Back

Full Screen

Close

Quit

7. Interval Arithmetic: Foundations of Interval Tech-
niques

• Problem: compute the range

[y, y] = {f(x1, . . . , xn) |x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}.

• Interval arithmetic: for arithmetic operations f(x1, x2)
(and for elementary functions), we have explicit formu-
las for the range.

• Examples: when x1 ∈ x1 = [x1, x1] and x2 ∈ x2 =
[x2, x2], then:

– The range x1 + x2 for x1 + x2 is [x1 + x2, x1 + x2].

– The range x1 − x2 for x1 − x2 is [x1 − x2, x1 − x2].

– The range x1 · x2 for x1 · x2 is [y, y], where

y = min(x1 · x2, x1 · x2, x1 · x2, x1 · x2);

y = max(x1 · x2, x1 · x2, x1 · x2, x1 · x2).

• The range 1/x1 for 1/x1 is [1/x1, 1/x1] (if 0 6∈ x1).

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 9 of 53

Go Back

Full Screen

Close

Quit

8. Straightforward Interval Computations: Example

• Example: f(x) = (x− 2) · (x + 2), x ∈ [1, 2].

• How will the computer compute it?

• r1 := x− 2;

• r2 := x + 2;

• r3 := r1 · r2.

• Main idea: perform the same operations, but with in-
tervals instead of numbers:

• r1 := [1, 2]− [2, 2] = [−1, 0];

• r2 := [1, 2] + [2, 2] = [3, 4];

• r3 := [−1, 0] · [3, 4] = [−4, 0].

• Actual range: f(x) = [−3, 0].

• Comment: this is just a toy example, there are more
efficient ways of computing an enclosure Y ⊇ y.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 10 of 53

Go Back

Full Screen

Close

Quit

9. First Idea: Use of Monotonicity

• Reminder: for arithmetic, we had exact ranges.

• Reason: +, −, · are monotonic in each variable.

• How monotonicity helps: if f(x1, . . . , xn) is (non-strictly)
increasing (f ↑) in each xi, then

f(x1, . . . ,xn) = [f(x1, . . . , xn), f(x1, . . . , xn)].

• Similarly: if f ↑ for some xi and f ↓ for other xj (−).

• Fact: f ↑ in xi if
∂f

∂xi
≥ 0.

• Checking monotonicity: check that the range [ri, ri] of
∂f

∂xi
on xi has ri ≥ 0.

• Differentiation: by Automatic Differentiation (AD) tools.

• Estimating ranges of
∂f

∂xi
: straightforward interval comp.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 11 of 53

Go Back

Full Screen

Close

Quit

10. Monotonicity: Example

• Idea: if the range [ri, ri] of each
∂f

∂xi
on xi has ri ≥ 0,

then

f(x1, . . . ,xn) = [f(x1, . . . , xn), f(x1, . . . , xn)].

• Example: f(x) = (x− 2) · (x + 2), x = [1, 2].

• Case n = 1: if the range [r, r] of
df

dx
on x has r ≥ 0,

then
f(x) = [f(x), f(x)].

• AD:
df

dx
= 1 · (x + 2) + (x− 2) · 1 = 2x.

• Checking: [r, r] = [2, 4], with 2 ≥ 0.

• Result: f([1, 2]) = [f(1), f(2)] = [−3, 0].

• Comparison: this is the exact range.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 12 of 53

Go Back

Full Screen

Close

Quit

11. Non-Monotonic Example

• Example: f(x) = x · (1− x), x ∈ [0, 1].

• How will the computer compute it?

• r1 := 1− x;

• r2 := x · r1.

• Straightforward interval computations:

• r1 := [1, 1]− [0, 1] = [0, 1];

• r2 := [0, 1] · [0, 1] = [0, 1].

• Actual range: min, max of f at x, x, or when
df

dx
= 0.

• Here,
df

dx
= 1− 2x = 0 for x = 0.5, so

– compute f(0) = 0, f(0.5) = 0.25, and f(1) = 0.

– y = min(0, 0.25, 0) = 0, y = max(0, 0.25, 0) = 0.25.

• Resulting range: f(x) = [0, 0.25].

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 13 of 53

Go Back

Full Screen

Close

Quit

12. Second Idea: Centered Form

• Main idea: Intermediate Value Theorem

f(x1, . . . , xn) = f(x̃1, . . . , x̃n) +
n∑

i=1

∂f

∂xi
(χ) · (xi − x̃i)

for some χi ∈ xi.

• Corollary: f(x1, . . . , xn) ∈ Y, where

Y = ỹ +
n∑

i=1

∂f

∂xi
(x1, . . . ,xn) · [−∆i, ∆i].

• Differentiation: by Automatic Differentiation (AD) tools.

• Estimating the ranges of derivatives:

– if appropriate, by monotonicity, or

– by straightforward interval computations, or

– by centered form (more time but more accurate).

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 14 of 53

Go Back

Full Screen

Close

Quit

13. Centered Form: Example

• General formula:

Y = f(x̃1, . . . , x̃n) +
n∑

i=1

∂f

∂xi
(x1, . . . ,xn) · [−∆i, ∆i].

• Example: f(x) = x · (1− x), x = [0, 1].

• Here, x = [x̃−∆, x̃ + ∆], with x̃ = 0.5 and ∆ = 0.5.

• Case n = 1: Y = f(x̃) +
df

dx
(x) · [−∆, ∆].

• AD:
df

dx
= 1 · (1− x) + x · (−1) = 1− 2x.

• Estimation: we have
df

dx
(x) = 1− 2 · [0, 1] = [−1, 1].

• Result: Y = 0.5 · (1 − 0.5) + [−1, 1] · [−0.5, 0.5] =
0.25 + [−0.5, 0.5] = [−0.25, 0.75].

• Comparison: actual range [0, 0.25], straightforward [0, 1].

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 15 of 53

Go Back

Full Screen

Close

Quit

14. Third Idea: Bisection

• Known: accuracy O(∆2
i) of first order formula

f(x1, . . . , xn) = f(x̃1, . . . , x̃n) +
n∑

i=1

∂f

∂xi
(χ) · (xi − x̃i).

• Idea: if the intervals are too wide, we:

– split one of them in half (∆2
i → ∆2

i /4); and

– take the union of the resulting ranges.

• Example: f(x) = x · (1− x), where x ∈ x = [0, 1].

• Split: take x′ = [0, 0.5] and x′′ = [0.5, 1].

• 1st range: 1− 2 · x = 1− 2 · [0, 0.5] = [0, 1], so f ↑ and
f(x′) = [f(0), f(0.5)] = [0, 0.25].

• 2nd range: 1 − 2 · x = 1 − 2 · [0.5, 1] = [−1, 0], so f ↓
and f(x′′) = [f(1), f(0.5)] = [0, 0.25].

• Result: f(x′) ∪ f(x′′) = [0, 0.25] – exact.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 16 of 53

Go Back

Full Screen

Close

Quit

15. Alternative Approach: Affine Arithmetic

• So far: we compute the range of x · (1 − x) by multi-
plying ranges of x and 1− x.

• We ignore: that both factors depend on x and are,
thus, dependent.

• Idea: for each intermediate result a, keep an explicit
dependence on ∆xi = x̃i−xi (at least its linear terms).

• Implementation:

a = a0 +
n∑

i=1

ai ·∆xi + [a, a].

• We start: with xi = x̃i −∆xi, i.e.,

x̃i+0·∆x1+. . .+0·∆xi−1+(−1)·∆xi+0·∆xi+1+. . .+0·∆xn+[0, 0].

• Description: a0 = x̃i, ai = −1, aj = for j 6= i, and
[a, a] = [0, 0].

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 17 of 53

Go Back

Full Screen

Close

Quit

16. Affine Arithmetic: Operations

• Representation: a = a0 +
n∑

i=1
ai ·∆xi + [a, a].

• Input: a = a0+
n∑

i=1
ai·∆xi+a and b = b0+

n∑
i=1

bi·∆xi+b.

• Operations: c = a⊗ b.

• Addition: c0 = a0 + b0, ci = ai + bi, c = a + b.

• Subtraction: c0 = a0 − b0, ci = ai − bi, c = a− b.

• Multiplication: c0 = a0 · b0, ci = a0 · bi + b0 · ai,

c = a0 · b + b0 · a +
∑
i6=j

ai · bj · [−∆i, ∆i] · [−∆j, ∆j]+∑
i

ai · bi · [−∆i, ∆i]
2+(∑

i

ai · [−∆i, ∆i]

)
·b+

(∑
i

bi · [−∆i, ∆i]

)
·a+a ·b.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 18 of 53

Go Back

Full Screen

Close

Quit

17. Affine Arithmetic: Example

• Example: f(x) = x · (1− x), x ∈ [0, 1].

• Here, n = 1, x̃ = 0.5, and ∆ = 0.5.

• How will the computer compute it?

• r1 := 1− x;

• r2 := x · r1.

• Affine arithmetic: we start with x = 0.5−∆x + [0, 0];

• r1 := 1− (0.5−∆) = 0.5 + ∆x;

• r2 := (0.5−∆x) · (0.5 + ∆x), i.e.,

r2 = 0.25 + 0 ·∆x− [−∆, ∆]2 = 0.25 + [−∆2, 0].

• Resulting range: y = 0.25 + [−0.25, 0] = [0, 0.25].

• Comparison: this is the exact range.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 19 of 53

Go Back

Full Screen

Close

Quit

18. Affine Arithmetic: Towards More Accurate Esti-
mates

• In our simple example: we got the exact range.

• In general: range estimation is NP-hard.

• Meaning: a feasible (polynomial-time) algorithm will
sometimes lead to excess width: Y ⊃ y.

• Conclusion: affine arithmetic may lead to excess width.

• Question: how to get more accurate estimates?

• First idea: bisection.

• Second idea (Taylor arithmetic):

– affine arithmetic: a = a0 +
∑

ai ·∆xi + a;

– meaning: we keep linear terms in ∆xi;

– idea: keep, e.g., quadratic terms

a = a0 +
∑

ai ·∆xi +
∑

aij ·∆xi ·∆xj + a.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 20 of 53

Go Back

Full Screen

Close

Quit

19. Interval Computations vs. Affine Arithmetic: Com-
parative Analysis

• Objective: we want a method that computes a reason-
able estimate for the range in reasonable time.

• Conclusion – how to compare different methods:

– how accurate are the estimates, and

– how fast we can compute them.

• Accuracy: affine arithmetic leads to more accurate ranges.

• Computation time:

– Interval arithmetic: for each intermediate result a,
we compute two values: endpoints a and a of [a, a].

– Affine arithmetic: for each a, we compute n + 3
values:

a0 a1, . . . , an a, a.

• Conclusion: affine arithmetic is ∼ n times slower.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 21 of 53

Go Back

Full Screen

Close

Quit

20. Solving Systems of Equations: Extending Known
Algorithms to Situations with Interval Uncertainty

• We have: a system of equations gi(y1, . . . , yn) = ai with
unknowns yi;

• We know: ai with interval uncertainty: ai ∈ [ai, ai];

• We want: to find the corresponding ranges of yj.

• First case: for exactly known ai, we have an algorithm
yj = fj(a1, . . . , an) for solving the system.

• Example: system of linear equations.

• Solution: apply interval computations techniques to
find the range fj([a1, a1], . . . , [an, an]).

• Better solution: for specific equations, we often already
know which ideas work best.

• Example: linear equations Ay = b; y is monotonic in b.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 22 of 53

Go Back

Full Screen

Close

Quit

21. Solving Systems of Equations When No Algo-
rithm Is Known

• Idea:

– parse each equation into elementary constraints,
and

– use interval computations to improve original ranges
until we get a narrow range (= solution).

• First example: x− x2 = 0.5, x ∈ [0, 1] (no solution).

• Parsing: r1 = x2, 0.5 (= r2) = x− r1.

• Rules: from r1 = x2, we extract two rules:

(1) x → r1 = x2; (2) r1 → x =
√

r1;

from 0.5 = x− r1, we extract two more rules:

(3) x → r1 = x− 0.5; (4) r1 → x = r1 + 0.5.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 23 of 53

Go Back

Full Screen

Close

Quit

22. Solving Systems of Equations When No Algo-
rithm Is Known: Example

• (1) r = x2; (2) x =
√

r; (3) r = x−0.5; (4) x = r+0.5.

• We start with: x = [0, 1], r = (−∞,∞).

(1) r = [0, 1]2 = [0, 1], so rnew = (−∞,∞) ∩ [0, 1] = [0, 1].

(2) xnew =
√

[0, 1] ∩ [0, 1] = [0, 1] – no change.

(3) rnew = ([0, 1]−0.5)∩[0, 1] = [−0.5, 0.5]∩[0, 1] = [0, 0.5].

(4) xnew = ([0, 0.5]+0.5)∩ [0, 1] = [0.5, 1]∩ [0, 1] = [0.5, 1].

(1) rnew = [0.5, 1]2 ∩ [0, 0.5] = [0.25, 0.5].

(2) xnew =
√

[0.25, 0.5] ∩ [0.5, 1] = [0.5, 0.71];
round a down ↓ and a up ↑, to guarantee enclosure.

(3) rnew = ([0.5, 0.71]−0.5)∩[0.25, 5] = [0.0.21]∩[0.25, 0.5],
i.e., rnew = ∅.

• Conclusion: the original equation has no solutions.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 24 of 53

Go Back

Full Screen

Close

Quit

23. Solving Systems of Equations: Second Example

• Example: x− x2 = 0, x ∈ [0, 1].

• Parsing: r1 = x2, 0 (= r2) = x− r1.

• Rules: (1) r = x2; (2) x =
√

r; (3) r = x; (4) x = r.

• We start with: x = [0, 1], r = (−∞,∞).

• Problem: after Rule 1, we’re stuck with x = r = [0, 1].

• Solution: bisect x = [0, 1] into [0, 0.5] and [0.5, 1].

• For 1st subinterval:

– Rule 1 leads to rnew = [0, 0.5]2 ∩ [0, 0.5] = [0, 0.25];

– Rule 4 leads to xnew = [0, 0.25];

– Rule 1 leads to rnew = [0, 0.25]2 = [0, 0.0625];

– Rule 4 leads to xnew = [0, 0.0625]; etc.

– we converge to x = 0.

• For 2nd subinterval: we converge to x = 1.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 25 of 53

Go Back

Full Screen

Close

Quit

24. Optimization: Extending Known Algorithms to
Situations with Interval Uncertainty

• Problem: find y1, . . . , ym for which

g(y1, . . . , ym, a1, . . . , am) → max .

• We know: ai with interval uncertainty: ai ∈ [ai, ai];

• We want: to find the corresponding ranges of yj.

• First case: for exactly known ai, we have an algorithm
yj = fj(a1, . . . , an) for solving the optimization prob-
lem.

• Example: quadratic objective function g.

• Solution: apply interval computations techniques to
find the range fj([a1, a1], . . . , [an, an]).

• Better solution: for specific f , we often already know
which ideas work best.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 26 of 53

Go Back

Full Screen

Close

Quit

25. Optimization When No Algorithm Is Known

• Idea: divide the original box x into subboxes b.

• If max
x∈b

g(x) < g(x′) for a known x′, dismiss b.

• Example: g(x) = x · (1− x), x = [0, 1].

• Divide into 10 (?) subboxes b = [0, 0.1], [0.1, 0.2], . . .

• Find g(̃b) for each b; the largest is 0.45 ·0.55 = 0.2475.

• Compute G(b) = g(̃b) + (1− 2 · b) · [−∆, ∆].

• Dismiss subboxes for which Y < 0.2475.

• Example: for [0.2, 0.3], we have

0.25 · (1− 0.25) + (1− 2 · [0.2, 0.3]) · [−0.05, 0.05].

• Here Y = 0.2175 < 0.2475, so we dismiss [0.2, 0.3].

• Result: keep only boxes ⊆ [0.3, 0.7].

• Further subdivision: get us closer and closer to x = 0.5.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 27 of 53

Go Back

Full Screen

Close

Quit

26. Case Study: Chip Design

• Chip design: one of the main objectives is to decrease
the clock cycle.

• Current approach: uses worst-case (interval) techniques.

• Problem: the probability of the worst-case values is
usually very small.

• Result: estimates are over-conservative – unnecessary
over-design and under-performance of circuits.

• Difficulty: we only have partial information about the
corresponding probability distributions.

• Objective: produce estimates valid for all distributions
which are consistent with this information.

• What we do: provide such estimates for the clock time.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 28 of 53

Go Back

Full Screen

Close

Quit

27. Estimating Clock Cycle: a Practical Problem

• Objective: estimate the clock cycle on the design stage.

• The clock cycle of a chip is constrained by the maxi-
mum path delay over all the circuit paths

D
def
= max(D1, . . . , DN).

• The path delay Di along the i-th path is the sum of
the delays corresponding to the gates and wires along
this path.

• Each of these delays, in turn, depends on several factors
such as:

– the variation caused by the current design prac-
tices,

– environmental design characteristics (e.g., variations
in temperature and in supply voltage), etc.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 29 of 53

Go Back

Full Screen

Close

Quit

28. Traditional (Interval) Approach to Estimating the
Clock Cycle

• Traditional approach: assume that each factor takes
the worst possible value.

• Result: time delay when all the factors are at their
worst.

• Problem:

– different factors are usually independent;

– combination of worst cases is improbable.

• Computational result: current estimates are 30% above
the observed clock time.

• Practical result: the clock time is set too high – chips
are over-designed and under-performing.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 30 of 53

Go Back

Full Screen

Close

Quit

29. Robust Statistical Methods Are Needed

• Ideal case: we know probability distributions.

• Solution: Monte-Carlo simulations.

• In practice: we only have partial information about the
distributions of some of the parameters; usually:

– the mean, and

– some characteristic of the deviation from the mean
– e.g., the interval that is guaranteed to contain
possible values of this parameter.

• Possible approach: Monte-Carlo with several possible
distributions.

• Problem: no guarantee that the result is a valid bound
for all possible distributions.

• Objective: provide robust bounds, i.e., bounds that
work for all possible distributions.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 31 of 53

Go Back

Full Screen

Close

Quit

30. Towards a Mathematical Formulation of the Prob-
lem

• General case: each gate delay d depends on the dif-
ference x1, . . . , xn between the actual and the nominal
values of the parameters.

• Main assumption: these differences are usually small.

• Each path delay Di is the sum of gate delays.

• Conclusion: Di is a linear function: Di = ai+
n∑

j=1

aij ·xj

for some ai and aij.

• The desired maximum delay D = max
i

Di has the form

D = F (x1, . . . , xn)
def
= max

i

(
ai +

n∑
j=1

aij · xj

)
.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 32 of 53

Go Back

Full Screen

Close

Quit

31. Towards a Mathematical Formulation of the Prob-
lem (cont-d)

• Known: maxima of linear function are exactly convex
functions:

F (α · x + (1− α) · y) ≤ α · F (x) + (1− α) · F (y)

for all x, y and for all α ∈ [0, 1];

• We know: factors xi are independent;

– we know distribution of some of the factors;

– for others, we know ranges [xj, xj] and means Ej.

• Given: a convex function F ≥ 0 and a number ε > 0.

• Objective: find the smallest y0 s.t. for all possible dis-
tributions, we have y ≤ y0 with the probability ≥ 1−ε.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 33 of 53

Go Back

Full Screen

Close

Quit

32. Additional Property: Dependency is Non-Degenerate

• Fact: sometimes, we learn additional information about
one of the factors xj.

• Example: we learn that xj actually belongs to a proper
subinterval of the original interval [xj, xj].

• Consequence: the class P of possible distributions is
replaced with P ′ ⊂ P.

• Result: the new value y′0 can only decrease: y′0 ≤ y0.

• Fact: if xj is irrelevant for y, then y′0 = y0.

• Assumption: irrelevant variables been weeded out.

• Formalization: if we narrow down one of the intervals
[xj, xj], the resulting value y0 decreases: y′0 < y0.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 34 of 53

Go Back

Full Screen

Close

Quit

33. Formulation of the Problem

GIVEN: • n, k ≤ n, ε > 0;

• a convex function y = F (x1, . . . , xn) ≥ 0;

• n− k cdfs Fj(x), k + 1 ≤ j ≤ n;

• intervals x1, . . . ,xk, values E1, . . . , Ek,

TAKE: all joint probability distributions on Rn for which:

• all xi are independent,

• xj ∈ xj, E[xj] = Ej for j ≤ k, and

• xj have distribution Fj(x) for j > k.

FIND: the smallest y0 s.t. for all such distributions,
F (x1, . . . , xn) ≤ y0 with probability ≥ 1− ε.

WHEN: the problem is non-degenerate – if we narrow down
one of the intervals xj, y0 decreases.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 35 of 53

Go Back

Full Screen

Close

Quit

34. Main Result and How We Can Use It

• Result: y0 is attained when for each j from 1 to k,

• xj = xj with probability p
j

def
=

xj − Ej

xj − xj

, and

• xj = xj with probability pj
def
=

Ej − xj

xj − xj

.

• Algorithm:

• simulate these distributions for xj, j < k;

• simulate known distributions for j > k;

• use the simulated values x
(s)
j to find

y(s) = F (x
(s)
1 , . . . , x(s)

n);

• sort N values y(s): y(1) ≤ y(2) ≤ . . . ≤ y(Ni);

• take y(Ni·(1−ε)) as y0.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 36 of 53

Go Back

Full Screen

Close

Quit

35. Comment about Monte-Carlo Techniques

• Traditional belief: Monte-Carlo methods are inferior to
analytical:

– they are approximate;

– they require large computation time;

– simulations for several distributions, may mis-calculate
the (desired) maximum over all distributions.

• We proved: the value corresponding to the selected dis-
tributions indeed provide the desired maximum value y0.

• General comment:

– justified Monte-Carlo methods often lead to faster
computations than analytical techniques;

– example: multi-D integration – where Monte-Carlo
methods were originally invented.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 37 of 53

Go Back

Full Screen

Close

Quit

36. Comment about Non-Linear Terms

• Reminder: in the above formula Di = ai +
n∑

j=1

aij · xj,

we ignored quadratic and higher order terms in the
dependence of each path time Di on parameters xj.

• In reality: we may need to take into account some
quadratic terms.

• Idea behind possible solution: it is known that the max
D = max

i
Di of convex functions Di is convex.

• Condition when this idea works: when each depen-
dence Di(x1, . . . , xk, . . .) is still convex.

• Solution: in this case,

– the function function D is still convex,

– hence, our algorithm will work.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 38 of 53

Go Back

Full Screen

Close

Quit

37. Conclusions

• Problem of chip design: decrease the clock cycle.

• How this problem is solved now: by using worst-case
(interval) techniques.

• Limitations of this solution: the probability of the worst-
case values is usually very small.

• Consequence: estimates are over-conservative, hence
over-design and under-performance of circuits.

• Objective: find the clock time as y0 s.t. for the actual
delay y, we have Prob(y > y0) ≤ ε for given ε > 0.

• Difficulty: we only have partial information about the
corresponding distributions.

• What we have described: a general technique that al-
lows us, in particular, to compute y0.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 39 of 53

Go Back

Full Screen

Close

Quit

38. Combining Interval and Probabilistic Uncertainty:
General Case

• Problem: there are many ways to represent a probabil-
ity distribution.

• Idea: look for an objective.

• Objective: make decisions Ex[u(x, a)] → max a.

• Case 1: smooth u(x).

• Analysis: we have u(x) = u(x0)+ (x−x0) ·u′(x0)+ . . .

• Conclusion: we must know moments to estimate E[u].

• Case of uncertainty: interval bounds on moments.

• Case 2: threshold-type u(x).

• Conclusion: we need cdf F (x) = Prob(ξ ≤ x).

• Case of uncertainty: p-box [F (x), F (x)].

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 40 of 53

Go Back

Full Screen

Close

Quit

39. Extension of Interval Arithmetic to Probabilistic
Case: Successes

• General solution: parse to elementary operations +,
−, ·, 1/x, max, min.

• Explicit formulas for arithmetic operations known for
intervals, for p-boxes F(x) = [F (x), F (x)], for intervals

+ 1st moments Ei
def
= E[xi]:

-

· · ·
-

-

xn,En

x2,E2

x1,E1

-y,Ef

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 41 of 53

Go Back

Full Screen

Close

Quit

40. Successes (cont-d)

• Easy cases: +, −, product of independent xi.

• Example of a non-trivial case: multiplication y = x1 ·
x2, when we have no information about the correlation:

• E = max(p1+p2−1, 0)·x1·x2+min(p1, 1−p2)·x1·x2+
min(1− p1, p2) ·x1 ·x2 +max(1− p1− p2, 0) ·x1 ·x2;

• E = min(p1, p2) · x1 · x2 + max(p1 − p2, 0) · x1 · x2+
max(p2− p1, 0) ·x1 ·x2 +min(1− p1, 1− p2) ·x1 ·x2,

where pi
def
= (Ei − xi)/(xi − xi).

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 42 of 53

Go Back

Full Screen

Close

Quit

41. Challenges

• intervals + 2nd moments:

-

· · ·
-

-

xn,En,Vn

x2,E2,V2

x1,E1,V1

-y,E,Vf

• moments + p-boxes; e.g.:

-

· · ·
-

-

En,Fn(x)

E2,F2(x)

E1,F1(x)

-E,F(x)f

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 43 of 53

Go Back

Full Screen

Close

Quit

42. Case Study: Bioinformatics

• Practical problem: find genetic difference between can-
cer cells and healthy cells.

• Ideal case: we directly measure concentration c of the
gene in cancer cells and h in healthy cells.

• In reality: difficult to separate.

• Solution: we measure yi ≈ xi · c + (1− xi) · h, where xi

is the percentage of cancer cells in i-th sample.

• Equivalent form: a · xi + h ≈ yi, where a
def
= c− h.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 44 of 53

Go Back

Full Screen

Close

Quit

43. Case Study: Bioinformatics (cont-d)

• If we know xi exactly: Least Squares Method
n∑

i=1
(a · xi + h − yi)

2 → min
a,h

, hence a =
C(x, y)

V (x)
and

h = E(y)− a · E(x), where E(x) =
1

n
·

n∑
i=1

xi,

V (x) =
1

n− 1
·

n∑
i=1

(xi − E(x))2,

C(x, y) =
1

n− 1
·

n∑
i=1

(xi − E(x)) · (yi − E(y)).

• Interval uncertainty: experts manually count xi, and
only provide interval bounds xi, e.g., xi ∈ [0.7, 0.8].

• Problem: find the range of a and h corresponding to
all possible values xi ∈ [xi, xi].

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 45 of 53

Go Back

Full Screen

Close

Quit

44. General Problem

• General problem:

– we know intervals x1 = [x1, x1], . . . , xn = [xn, xn],

– compute the range of E(x) =
1

n

n∑
i=1

xi, population

variance V =
1

n

n∑
i=1

(xi − E(x))2, etc.

• Difficulty: NP-hard even for variance.

• Known:

– efficient algorithms for V ,

– efficient algorithms for V and C(x, y) for reasonable
situations.

• Bioinformatics case: find intervals for C(x, y) and for
V (x) and divide.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 46 of 53

Go Back

Full Screen

Close

Quit

45. Case Study: Detecting Outliers

• In many application areas, it is important to detect
outliers, i.e., unusual, abnormal values.

• In medicine, unusual values may indicate disease.

• In geophysics, abnormal values may indicate a mineral
deposit (or an erroneous measurement result).

• In structural integrity testing, abnormal values may in-
dicate faults in a structure.

• Traditional engineering approach: a new measurement
result x is classified as an outlier if x 6∈ [L, U], where

L
def
= E − k0 · σ, U

def
= E + k0 · σ,

and k0 > 1 is pre-selected.

• Comment: most frequently, k0 = 2, 3, or 6.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 47 of 53

Go Back

Full Screen

Close

Quit

46. Outlier Detection Under Interval Uncertainty: A
Problem

• In some practical situations, we only have intervals
xi = [xi, xi].

• Different xi ∈ xi lead to different intervals [L, U].

• A possible outlier: outside some k0-sigma interval.

• Example: structural integrity – not to miss a fault.

• A guaranteed outlier: outside all k0-sigma intervals.

• Example: before a surgery, we want to make sure that
there is a micro-calcification.

• A value x is a possible outlier if x 6∈ [L, U].

• A value x is a guaranteed outlier if x 6∈ [L, U].

• Conclusion: to detect outliers, we must know the ranges
of L = E − k0 · σ and U = E + k0 · σ.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 48 of 53

Go Back

Full Screen

Close

Quit

47. Outlier Detection Under Interval Uncertainty: A
Solution

• We need: to detect outliers, we must compute the
ranges of L = E − k0 · σ and U = E + k0 · σ.

• We know: how to compute the ranges E and [σ, σ] for
E and σ.

• Possibility: use interval computations to conclude that
L ∈ E− k0 · [σ, σ] and L ∈ E + k0 · [σ, σ].

• Problem: the resulting intervals for L and U are wider
than the actual ranges.

• Reason: E and σ use the same inputs x1, . . . , xn and
are hence not independent from each other.

• Practical consequence: we miss some outliers.

• Desirable: compute exact ranges for L and U .

• Application: detecting outliers in gravity measurements.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 49 of 53

Go Back

Full Screen

Close

Quit

48. Acknowledgments

This work was supported in part by:

• by National Science Foundation grants HRD-0734825,
EAR-0225670, and EIA-0080940, and

• by Texas Department of Transportation grant No. 0-
5453.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 50 of 53

Go Back

Full Screen

Close

Quit

49. Fuzzy Computations: A Problem

-

· · ·
-

-

µn(xn)

µ2(x2)

µ1(x1)

-µ = f(µ1, . . . , µn)f

• Given: an algorithm y = f(x1, . . . , xn) and n fuzzy
numbers µi(xi).

• Compute: µ(y) = max
x1,...,xn:f(x1,...,xn)=y

min(µ1(x1), . . . , µn(xn)).

• Motivation: y is a possible value of Y ↔∃x1, . . . , xn s.t.
each xi is a possible value of Xi and f(x1, . . . , xn) = y.

• Details: “and” is min, ∃ (“or”) is max, hence

µ(y) = max
x1,...,xn

min(µ1(x1), . . . , µn(xn), t(f(x1, . . . , xn) = y)),

where t(true) = 1 and t(false) = 0.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 51 of 53

Go Back

Full Screen

Close

Quit

50. Fuzzy Computations: Reduction to Interval Com-
putations

• Problem (reminder):

– Given: an algorithm y = f(x1, . . . , xn) and n fuzzy
numbers Xi described by membership functions µi(xi).

– Compute: Y = f(X1, . . . , Xn), where Y is defined
by Zadeh’s extension principle:

µ(y) = max
x1,...,xn:f(x1,...,xn)=y

min(µ1(x1), . . . , µn(xn)).

• Idea: represent each Xi by its α-cuts

Xi(α) = {xi : µi(xi) ≥ α}.

• Advantage: for continuous f , for every α, we have

Y (α) = f(X1(α), . . . , Xn(α)).

• Resulting algorithm: for α = 0, 0.1, 0.2, . . . , 1 apply in-
terval computations techniques to compute Y (α).

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 52 of 53

Go Back

Full Screen

Close

Quit

51. Proof of the Result about Chips

• Let us fix the optimal distributions for x2, . . . , xn; then,

Prob(D ≤ y0) =
∑

(x1,...,xn):D(x1,...,xn)≤y0

p1(x1) · p2(x2) · . . .

• So, Prob(D ≤ y0) =
N∑

i=0
ci · qi, where qi

def
= p1(vi).

• Restrictions: qi ≥ 0,
N∑

i=0
qi = 1, and

N∑
i=0

qi · vi = E1.

• Thus, the worst-case distribution for x1 is a solution to
the following linear programming (LP) problem:

Minimize
N∑

i=0
ci · qi under the constraints

N∑
i=0

qi = 1 and

N∑
i=0

qi · vi = E1, qi ≥ 0, i = 0, 1, 2, . . . , N.

General Problem of . . .

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Acknowledgments

Fuzzy Computations: . . .

Title Page

JJ II

J I

Page 53 of 53

Go Back

Full Screen

Close

Quit

52. Proof of the Result about Chips (cont-d)

• Minimize:
N∑

i=0
ci ·qi under the constraints

N∑
i=0

qi = 1 and

N∑
i=0

qi · vi = E1, qi ≥ 0, i = 0, 1, 2, . . . , N.

• Known: in LP with N + 1 unknowns q0, q1, . . . , qN ,
≥ N + 1 constraints are equalities.

• In our case: we have 2 equalities, so at least N − 1
constraints qi ≥ 0 are equalities.

• Hence, no more than 2 values qi = p1(vi) are non-0.

• If corresponding v or v′ are in (x1, x1), then for [v, v′] ⊂
x1 we get the same y0 – in contradiction to non-degeneracy.

• Thus, the worst-case distribution is located at x1 and x1.

• The condition that the mean of x1 is E1 leads to the
desired formulas for p

1
and p1.

	General Problem of Data Processing under Uncertainty
	Probabilistic and Interval Uncertainty
	Interval Computations: A Problem
	Interval Computations: A Brief History
	Alternative Approach: Maximum Entropy
	Limitations of Maximum Entropy Approach
	Interval Arithmetic: Foundations of Interval Techniques
	Straightforward Interval Computations: Example
	First Idea: Use of Monotonicity
	Monotonicity: Example
	Non-Monotonic Example
	Second Idea: Centered Form
	Centered Form: Example
	Third Idea: Bisection
	Alternative Approach: Affine Arithmetic
	Affine Arithmetic: Operations
	Affine Arithmetic: Example
	Affine Arithmetic: Towards More Accurate Estimates
	Interval Computations vs. Affine Arithmetic: Comparative Analysis
	Solving Systems of Equations: Extending Known Algorithms to Situations with Interval Uncertainty
	Solving Systems of Equations When No Algorithm Is Known
	Solving Systems of Equations When No Algorithm Is Known: Example
	Solving Systems of Equations: Second Example
	Optimization: Extending Known Algorithms to Situations with Interval Uncertainty
	Optimization When No Algorithm Is Known
	Case Study: Chip Design
	Estimating Clock Cycle: a Practical Problem
	Traditional (Interval) Approach to Estimating the Clock Cycle
	Robust Statistical Methods Are Needed
	Towards a Mathematical Formulation of the Problem
	Towards a Mathematical Formulation of the Problem (cont-d)
	Additional Property: Dependency is Non-Degenerate
	Formulation of the Problem
	Main Result and How We Can Use It
	Comment about Monte-Carlo Techniques
	Comment about Non-Linear Terms
	Conclusions
	Combining Interval and Probabilistic Uncertainty: General Case
	Extension of Interval Arithmetic to Probabilistic Case: Successes
	Successes (cont-d)
	Challenges
	Case Study: Bioinformatics
	Case Study: Bioinformatics (cont-d)
	General Problem
	Case Study: Detecting Outliers
	Outlier Detection Under Interval Uncertainty: A Problem
	Outlier Detection Under Interval Uncertainty: A Solution
	Acknowledgments
	Fuzzy Computations: A Problem
	Fuzzy Computations: Reduction to Interval Computations
	Proof of the Result about Chips
	Proof of the Result about Chips (cont-d)

