
GPE Tutorial - Hands-On Session
 Using the Grid Programming Environment

Ralf Ratering, Intel Corporation, ralf.ratering@intel.com

September 6, 2007

The only prerequisite: The free VMware Player
For the hands-on session we will use a pre-configured VM image that contains a full
GPE installation including a UNICORE server. Therefore attendees have to install the
VMware Player on their systems. The VMware Player is freely available from
http://www.vmware.com/products/player. There are versions for Windows and Linux.
The size of the download package is ~145MB, so please make sure to start the
download in advance if possible.

If you have installed the VMWare Player you’re all set for the tutorial. Everything
else will be pre-installed in the VM image you will receive during the tutorial.

Getting Started

Copying the VM image from the Tutorial DVD
Once the VMware Player is installed, you will have to copy the VM image for the
tutorial onto your system. The image will be distributed by DVD (or USB stick) during
the tutorial. Its size is ~4GB, so please make sure there is enough space available on
your file system. On the DVD you will find a file “Tutorial-VM.rar”. Copy this file to
your hard disk and unpack it. In case you do not have a packaging tool available on
your system that can deal with the “rar” format, you will find free tools in the
“Windows” or “Linux” sub directories of the DVD.

The archive will contain 3 files, that are needed by the VMware Player (SUSE
Linux.vmdk, SUSE Linux.vmx, SUSE Linux-flat.vmdk). After you have copied the
image to your file system you can open the file “SUSE Linux.vmx” in the VM Player
and the tutorial OS will be started. We will use an OpenSUSE image that already
contains all applications that are required for the tutorial.

At startup the VMWare Player will inform you that the VM image location has
changed, since the last time it was used. Please confirm in the dialog that you want
to create a new VM identifier.

The login name on the system is “unicore”, password: “tutorial”, root password:
“gpedemo”. On startup the system will automatically log in as user “unicore”.

mailto:ralf.ratering@intel.com
http://www.vmware.com/products/player

Starting the UNICORE 6 server
Once you have logged into the system, you will find the UNICORE server in the
directory /home/unicore/Unicore6. The server will be started with the script
“start.sh” in that directory. If the start was successful you will see the following
message at the end of the console:

[…]

Starting UNICORE/X server…

Unicore atomic services starting.

Starting the GPE Application Client
The GPE client framework is installed in the directory “/home/unicore/GPE4Unicore
Client”. The Application Client will be started with the script “bin/application-client.sh”.

After the client started you will be asked for the password to open the keystore
that contains your private key and trusted certificates. The password is “tutorial”.

If the keystore has been successfully unlocked, you should see the entry “localhost”
in the registry list. If you select the registry entry, two new entries should appear in
the list of target systems below. That’s it! You’re ready to run your first Grid job on
your Unicore demo server.

Section 1: Using the GPE Application Client

Running a simple Grid job
This is how to run your first Grid job using the Generic GridBean that is capable of
running arbitrary applications:

1. Connect to a target system: In the list of target system you will have to
select the entry “localhost” and connect to it with the corresponding entry in
the popup menu that appears on a right mouse click. (Behind the scenes a
“connect” will create a target system resource for you, that you can now
work with.) If the connection has been established, the entry should appear
as “DEMO-SITE”.

2. Select the application “Date 1.0” application in the combo box of the Generic
GridBean.

3. Make sure that the “DEMO-SITE” target system is still selected in the target
systems panel and submit the job with “File->Submit”

4. The job should appear in the job list. If it is still “RUNNING”, do a right mouse
click->”Refresh” to update the status.

5. Once the job appears as “SUCCESSFUL”, do a right mouse click->”Fetch
Outcome” on the selected job to retrieve standard out and standard error.

6. In the “Stdout” panel of the “Outcome” tab, the current date of the target
system should be printed now, indicating that you just ran your first job on
the Unicore demo server successfully!

Please note, that you just executed the abstract (pseudo-)application “Date 1.0” on
the Grid. The application was incarnated to the command “/bin/date” on the Unicore
server.

Using the POVRay GridBean
The next job we’ll try is a little more complicated, since it involves file imports and
exports between client and server. We’ll also see how an application-specific
GridBean works, taking the POVRay ray tracing application as an example.

1. Download the POVRay GridBean using “File->Download GridBean”. The
POVRay panel should appear in the Application Client now.

2. You will find an example POVRay scene description (Example.pov) in the
folder “/home/unicore/GPE4Unicore Client/tutorial/files”. Load this file into
the POVRay text editor.

3. Submit the POVRay job to the target system. The POVRay scene file will now
be transferred to the server and rendered there. This logic is implemented in
the POVRay GridBean and hidden from the user.

4. If the job finishes as “SUCCESSFUL”, fetch the outcome as in the previous
examples. This time you will notice that the output image of POVRay is being
displayed in the outcome panel in the client. This pre-processing functionality
of displaying the image is also part of the POVRay GridBean, while stdout and
stderr display are standard panels in the Application Client.

Solving Sudoku with Ruby
Now that we’ve seen how comfortable an application-specific GridBean like the
POVRay GridBean handles all file imports and exports as well as the program
parameters, we’ll go back to a generic GridBean that allows executing arbitrary
scripts: the Script GridBean. We will show how it can be used to solve a Sudoku game
by running a Ruby program on a Grid system:

1. Load the Script GridBean in the Application Client

2. Select Ruby as application in the Script GridBean combo box

3. In the folder “tutorial/files”, you will find the main Ruby file “main.rb”. Load
this file in the text editor of the Script GridBean. If you’re roughly familiar
with Ruby, (or programming such), you will notice that main.rb requires
additional files to execute: The statement <requires “sudoku”> imports an
additional Ruby file and the constructor <Sudoku.new("board1.txt") > takes a

file named “board1.txt” in the current directory as input. This means that we
have to transfer the files to the job directory before we actually run “main.rb”.

4. The files “sudoku.rb” and “board1.txt” are also located in the directory
“tutorial/files”. Add these files to the “InputFileset” in the “Files” tab.

5. Submit the job and fetch the outcome as usual. Were you able to solve
board1? Can you do the same with “board2.txt” in the “tutorial/files” folder?
What happens if the Sudoku has multiple solutions?

Exercise: Run a POVRay job using the Generic GridBean
Instead of using the comfortable POVRay GridBean, it is also possible to render the
“Example.pov” file using the Generic GridBean. Therefore you have to specify
Example.pov as input file in the “Files” tab and the image file “Example.png” as
output file in the “Output files” section of the Generic GridBean. Please note that
output files are defined by name/value. This allows to refer to files in workflows by
their variable name. In our case it is save to set both name and value to
“Example.png”.

Can you make this work?

Section 2: GPE Programming

Introduction
In this section we will learn how to implement your own Grid client using the GPE API.
You will learn how to run and monitor Grid jobs, how to specify input files and
parameters and how to retrieve the outcome. We do not start with GridBean
programming directly, but instead use a simple Java client for the programming
exercises. We believe that it is important to understand the underlying GPE concepts
by looking at the code that is actually hidden by the GridBean API.

The main idea behind the GPE API is that details of the underlying Grid middleware
are hidden from the developer. Currently two implementations of the GPE API exist,
one for UNICORE 6 and one for the Globus Toolkit 4. All code that is written in this
section will run on both middleware implementations without modification.

Task 1: Running a Grid job from a simple Java application
For this exercise we will use the class com.intel.gpe.tutorial.SimpleClient1. You will
find the corresponding source files in the “tutorial/src” folder of the GPE4Unicore
Client installation directory.

To start the application you will use the ant build script “tutorial/build.xml”. Try
running the application by invoking the command “ant runSimpleClient1”. If the job
executed successfully, open your GPE Application Client and fetch the outcome of
the job.

Exercise 1.1: Which Application was executed and what is the result? Does everyone
receive the same result here and if yes, why?

Exercise 1.2: The job in the GPE Application Client appears without a name in the job
list. Set the job name in the source code of SimpleClient1. Hint: A job name in GPE is
an “Id”.

Exercise 1.3: SimpleClient1 allows you to specify arbitrary command line parameters
for the application that will be stored in the String applicationParameters. Set the
application parameters as a field in the GPE job. What should be the name of this
field and why? Hint: Lookup the server-side incarnation of the applications in the
example IDB under “files/example.idb”. What is the common parameter of all
applications? Execute the COMMAND application with “date” as parameter to see if
your program works.

Task 2: Adding file imports
For this exercise we will use SimpleClient2 (“ant runSimpleClient2”). This client
provides a method importFilesFromLocal() to import files from the local file system
to the job’s working directory.

Exercise 2.1: Start the file imports by adding a line importFilesFromLocal(jobClient); in
the code. Where should this line be added and why?

Exercise 2.2: Verify your implementation by importing a file from your local file
system and executing the “ls” command on the job’s working directory.

Task 3: Specifying and fetching the job outcome
For this exercise we will use SimpleClient3 (“ant runSimpleClient3”). This client
provides a method fetchOutcome() for fetching standard output of your job to your
local file system.

Exercise 3.1: Modify fetchOutcome() so that also the standard error will be fetched.
Hint: In a good implementation, you should only send one request to the server to
retrieve the complete outcome.

Exercise 3.2: Create a job that will fail to see if fetching the standard error works.

You have learned now how to add a file transfer for standard error from the job
working directory to your local file system. The same mechanism will also work for
arbitrary file exports. For instance you can add a transfer that exports the image file
of a POVRay execution to your local file system. (If you execute the POVRay
application on the input file “./files/example.pov” an output file named “example.png”
will be created in the job’s working directory.)

Exercise 3.3: Add a file transfer that exports the image file of a POVRay execution
to your local file system. Set the application parameters +W and +H to change the
image size.

Task 4: Destroying the job after execution
We almost have a fully working GPE client now. An important step that is still missing
is the job destruction.

Exercise 4.1: After the job has successfully finished and all outcome has been
fetched, destroy the job. Is there another possibility of removing a job than directly
destroying it?

Task 5: Creating a multi-step job
We have now created a fully functional client that allows to stage in files from the
local file system to the job’s working directory, execute an application with
parameters, retrieve the outcome and destroy the job. In this exercise will enhance
this functionality to create a client-side workflow that consists of two jobs.

Exercise 5.1: Create a client-side workflow that imports the Java file
“./files/Factorization.java”. This Java class will compute the prime factors of a large
numbers. Compile the java class on the remote target system using the JAVAC
application. The resulting class file “Factorization.class” should be transferred back to
the client file system and then back to the working directory of a second job. The
second job should invoke the JAVA application on the Factorization class with the
number as parameter. Finally the outcome of the execution will be displayed in the
standard out of the second job.

Exercise 5.2: In the previous exercise we transferred the intermediate class file back
to the client for simplicity. We can improve the performance if we leave the class file
in a temporary directory on the remote target system. The second job should then
read the file from this temporary directory instead of transferring it from the local
file system. Hint: Instead of using the class LocalGPEFile the class
com.intel.gpe.client2.common.utils.RemoteGPEFile should be used to specify file
locations on remote file systems. What is the risk of file spooling in temporary
directories if multiple users are mapped onto the same login at the target system?

Exercise 5.3: Instead of spooling the class file at a temporary directory on the target
system, the second job can even directly read the file from the working directory of
the first job. This is actually the preferable solution for multi-step jobs, because it
prevents the performance and security issues of the implementations in 5.1 and 5.2.

Hint: If a job is destroyed, its working directory will also be removed.

	The only prerequisite: The free VMware Player
	Getting Started
	Copying the VM image from the Tutorial DVD
	Starting the UNICORE 6 server
	Starting the GPE Application Client

	Section 1: Using the GPE Application Client
	Running a simple Grid job
	Using the POVRay GridBean
	Solving Sudoku with Ruby
	Exercise: Run a POVRay job using the Generic GridBean

	Section 2: GPE Programming
	Introduction
	Task 1: Running a Grid job from a simple Java application
	Task 2: Adding file imports
	Task 3: Specifying and fetching the job outcome
	Task 4: Destroying the job after execution
	Task 5: Creating a multi-step job

